1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVoronoiSegmentationRGBImageFilter.h,v $
Language: C++
Date: $Date: 2006-11-09 13:48:55 $
Version: $Revision: 1.34 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkVoronoiSegmentationRGBImageFilter_h
#define _itkVoronoiSegmentationRGBImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkVoronoiSegmentationImageFilterBase.h"
#include "itkImage.h"
namespace itk
{
/** \class VoronoiSegmentationRGBImageFilter
*
* Segmentation of 2D RGB images using Voronoi Diagram.
* This is not a standard 3 channel image filter, it also investigates the
* HSV color space information. from RGBHSV, the user can specify or by giving
* a prior binary mask, the algorithm will decide which 3 channels out of the
* 6 channels will be used for homogeneity testing.
* the homogeneity testing requires all the three testing channels to have the
* similar mean and standard deviation value from the gold-standard in the sense that the
* difference will be under the tolerance value.
*
* Input parameters are:
* (1) Image data, in the format: itkImage<itkVector<PixelType,3>, 2>.
* (2) Object statistics: mean and standard deviation
* (3) Tolerance level for the classifier. This level is usually set
* around the mean and standard deviation values.
*
* These parameters can also be automatically set by providing a binary image prior.
*
* Detailed information about this algorithm can be found in:
* " Semi-automated color segmentation of anatomical tissue,"
* C. Imelinska, M. Downes, and W. Yuan
* Computerized Medical Imaging and Graphics, Vol.24, pp 173-180, 2000.
*
*
* \ingroup HybridSegmentation
*/
template <class TInputImage, class TOutputImage>
class ITK_EXPORT VoronoiSegmentationRGBImageFilter:
public VoronoiSegmentationImageFilterBase<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef VoronoiSegmentationRGBImageFilter Self;
typedef VoronoiSegmentationImageFilterBase<TInputImage,TOutputImage> Superclass;
typedef SmartPointer <Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(VoronoiSegmentationRGBImageFilter,
VoronoiSegmentationImageFilterBase);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Convenient typedefs. */
typedef typename Superclass::BinaryObjectImage BinaryObjectImage;
typedef typename Superclass::IndexList IndexList;
typedef typename Superclass::IndexType IndexType;
typedef typename Superclass::RegionType RegionType;
typedef typename Superclass::PixelType PixelType;
typedef typename Superclass::InputImagePointer InputImagePointer;
typedef typename Superclass::InputImageType InputImageType;
typedef Vector<float,6> RGBHCVPixel;
typedef Image<RGBHCVPixel> RGBHCVImage;
/** \todo Document. */
void SetMeanPercentError(double x[6]);
void SetSTDPercentError(double x[6]);
void GetMeanPercentError(double x[6]){for(int i=0;i<6;i++) x[i]=m_MeanPercentError[i];};
void GetSTDPercentError(double x[6]){for(int i=0;i<6;i++) x[i]=m_STDPercentError[i];};
void GetMean(double x[6]){for(int i=0;i<6;i++) x[i]=m_Mean[i];};
void GetSTD(double x[6]){for(int i=0;i<6;i++) x[i]=m_STD[i];};
void SetMean(double x[6]){for(int i=0;i<6;i++) m_Mean[i]=x[i];};
void SetSTD(double x[6]){for(int i=0;i<6;i++) m_STD[i]=x[i];};
void GetMeanTolerance(double x[6]){for(int i=0;i<6;i++) x[i]=m_MeanTolerance[i];};
void GetSTDTolerance(double x[6]){for(int i=0;i<6;i++) x[i]=m_STDTolerance[i];};
/** Maximum value of the RGB, needed for color space coversions.
* default as 8 bit per channel, if it is different, need to be
* set before doing anything. */
itkSetMacro(MaxValueOfRGB,double);
itkGetMacro(MaxValueOfRGB,double);
/** Set the three channels to test the mean and STD respectivley
* 0:red, 1:green, 2:blue, 3:hue, 4:chroma, 5:value. */
void SetTestMean(unsigned int t1,unsigned int t2,unsigned int t3){
m_TestMean[0] = t1;
m_TestMean[1] = t2;
m_TestMean[2] = t3;
}
void SetTestSTD(unsigned int t1,unsigned int t2,unsigned int t3){
m_TestSTD[0] = t1;
m_TestSTD[1] = t2;
m_TestSTD[2] = t3;
}
void GetTestMean(unsigned int x[3]){
x[0]=m_TestMean[0];x[1]=m_TestMean[1];x[2]=m_TestMean[2];
}
void GetTestSTD(unsigned int x[3]){
x[0]=m_TestSTD[0];x[1]=m_TestSTD[1];x[2]=m_TestSTD[2];
}
void TakeAPrior(const BinaryObjectImage* aprior);
virtual void SetInput(const InputImageType *input);
virtual void SetInput( unsigned int, const InputImageType * image);
/** ImageDimension enumeration */
itkStaticConstMacro(InputImageDimension, unsigned int,
TInputImage::ImageDimension );
itkStaticConstMacro(OutputImageDimension, unsigned int,
TOutputImage::ImageDimension );
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(SameDimensionCheck,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro(IntConvertibleToOutputCheck,
(Concept::Convertible<int, typename TOutputImage::PixelType>));
/** End concept checking */
#endif
protected:
VoronoiSegmentationRGBImageFilter();
~VoronoiSegmentationRGBImageFilter();
void PrintSelf(std::ostream& os, Indent indent) const;
private:
double m_Mean[6];
double m_STD[6];
double m_MeanTolerance[6];
double m_STDTolerance[6];
double m_MeanPercentError[6];
double m_STDPercentError[6];
double m_MaxValueOfRGB;
unsigned int m_TestMean[3];
unsigned int m_TestSTD[3];
typename RGBHCVImage::Pointer m_WorkingImage;
virtual bool TestHomogeneity(IndexList &Plist);
private:
VoronoiSegmentationRGBImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
};
}//end namespace
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVoronoiSegmentationRGBImageFilter.txx"
#endif
#endif
|