File: itkWatershedImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (218 lines) | stat: -rw-r--r-- 5,988 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkWatershedImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2004-02-24 20:42:17 $
  Version:   $Revision: 1.36 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkWatershedImageFilter_txx
#define _itkWatershedImageFilter_txx
#include "itkWatershedImageFilter.h"

namespace itk
{

template< class TInputImage >
void
WatershedImageFilter<TInputImage>
::SetThreshold(double val)
{
  if (val < 0.0)
    {
    val = 0.0;
    }
  else if (val > 1.0)
    {
    val = 1.0;
    }
  
  if (val != m_Threshold)
    {
    m_Threshold = val;
    m_Segmenter->SetThreshold( m_Threshold );

    m_ThresholdChanged = true;
    this->Modified();
    }
}

template< class TInputImage >
void
WatershedImageFilter<TInputImage>
::SetLevel(double val)
{
  if (val < 0.0)
    {
    val = 0.0;
    }
  else if (val > 1.0)
    {
    val = 1.0;
    }
  
  if (val != m_Level)
    {
    m_Level = val;
    m_TreeGenerator->SetFloodLevel( m_Level );
    m_Relabeler->SetFloodLevel( m_Level );

    m_LevelChanged = true;
    this->Modified();
    }
}
  
template< class TInputImage >
WatershedImageFilter<TInputImage>
::WatershedImageFilter() :  m_Threshold(0.0), m_Level(0.0)
{
  // Set up the mini-pipeline for the first execution.
  m_Segmenter    = watershed::Segmenter<InputImageType>::New();
  m_TreeGenerator= watershed::SegmentTreeGenerator<ScalarType>::New();
  m_Relabeler    = watershed::Relabeler<ScalarType, ImageDimension>::New();
    
  m_Segmenter->SetDoBoundaryAnalysis( false );
  m_Segmenter->SetSortEdgeLists(true);
  m_Segmenter->SetThreshold( this->GetThreshold() );

  m_TreeGenerator->SetInputSegmentTable( m_Segmenter->GetSegmentTable() );
  m_TreeGenerator->SetMerge( false );
  m_TreeGenerator->SetFloodLevel( this->GetLevel() );

  m_Relabeler->SetInputSegmentTree( m_TreeGenerator->GetOutputSegmentTree() );
  m_Relabeler->SetInputImage( m_Segmenter->GetOutputImage() );
  m_Relabeler->SetFloodLevel( this->GetLevel() );

  WatershedMiniPipelineProgressCommand::Pointer c =
    WatershedMiniPipelineProgressCommand::New();
  c->SetFilter(this);
  c->SetNumberOfFilters(3);

  m_Segmenter->AddObserver(ProgressEvent(), c);
  m_ObserverTag = m_TreeGenerator->AddObserver(ProgressEvent(), c);
  m_Relabeler->AddObserver(ProgressEvent(), c);

  m_InputChanged = true;
  m_LevelChanged = true;
  m_ThresholdChanged = true;
}
  
template< class TInputImage >
void
WatershedImageFilter<TInputImage>
::EnlargeOutputRequestedRegion(DataObject *data)
{
  Superclass::EnlargeOutputRequestedRegion(data);
  data->SetRequestedRegionToLargestPossibleRegion();
}

template< class TInputImage >
void
WatershedImageFilter<TInputImage>
::PrepareOutputs()
{
  // call the superclass' method to clear out the outputs
  Superclass::PrepareOutputs();

  // clear out the temporary storage of the mini-pipeline as necessary
  //
  //

  // If input changed, then Segmenter + Tree Generator + Relabeler need
  // to re-execute.  Plus, the HighestCalculatedFloodLevel must be reset
  // on the Tree Generator.
  //
  // If the threshold changed, then Segmenter + Tree Generator +
  // Relabeler need to re-execute.  Plus, the
  // HighestCalculatedFloodLevel must be reset on the Tree Generator
  //
  if (m_InputChanged
      || (this->GetInput()->GetPipelineMTime() > m_GenerateDataMTime)
      || m_ThresholdChanged)
    {
    m_Segmenter->PrepareOutputs();
    m_TreeGenerator->PrepareOutputs();
    m_Relabeler->PrepareOutputs();
      
    m_TreeGenerator->SetHighestCalculatedFloodLevel(0.0);
    }
    
  // If the flood level changed but is below the Tree
  // Generator::HighestCalculatedFloodLevel, then only the Relabeler
  // must execute.
  //
  // If the flood level changed and is above the Tree
  // Generator::HighestCalculatedFloodLevel, then the Tree Generator +
  // Relabeler must execute.
  //
  if (m_LevelChanged)
    {
    if (m_Level <= m_TreeGenerator->GetHighestCalculatedFloodLevel())
      {
      m_Relabeler->PrepareOutputs();
      }
    else
      {
      m_TreeGenerator->PrepareOutputs();
      m_Relabeler->PrepareOutputs();
      }
    }
}

template< class TInputImage >
void
WatershedImageFilter<TInputImage>
::GenerateData()
{
  // Set the largest possible region in the segmenter
  m_Segmenter->SetLargestPossibleRegion(this->GetInput()
                                        ->GetLargestPossibleRegion());
  m_Segmenter->GetOutputImage()
    ->SetRequestedRegion(this->GetInput()->GetLargestPossibleRegion());
  
  // Setup the progress command
  WatershedMiniPipelineProgressCommand::Pointer c =
    dynamic_cast<WatershedMiniPipelineProgressCommand *>(
      m_TreeGenerator->GetCommand(m_ObserverTag) ); 
  c->SetCount(0.0);
  c->SetNumberOfFilters(3);
      
  // Graft our output on the relabeler
  m_Relabeler->GraftOutput( this->GetOutput() );

  // Update the mini-pipeline
  m_Relabeler->Update();

  // Graft the output of the relabeler back on this filter
  this->GraftOutput( m_Relabeler->GetOutputImage() );

  // Keep track of when we last executed
  m_GenerateDataMTime.Modified();

  // Clear flags
  m_InputChanged = false;
  m_LevelChanged = false;
  m_ThresholdChanged = false;
}

template<class TInputImage>
void 
WatershedImageFilter<TInputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << indent << "Threshold: " << m_Threshold << std::endl;
  os << indent << "Level: " << m_Level << std::endl;
}

} // end namespace itk

#endif