File: itkWatershedRelabeler.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (267 lines) | stat: -rw-r--r-- 8,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkWatershedRelabeler.txx,v $
  Language:  C++
  Date:      $Date: 2004-02-29 13:33:04 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkWatershedRelabeler_txx
#define __itkWatershedRelabeler_txx

#include "itkImageRegionIterator.h"

namespace itk
{
namespace watershed
{

template <class TScalarType, unsigned int TImageDimension>
Relabeler<TScalarType, TImageDimension>::
Relabeler() : m_FloodLevel(0.0)
{
  typename ImageType::Pointer img
    = static_cast<ImageType*>(this->MakeOutput(0).GetPointer());
  this->SetNumberOfRequiredOutputs(1);
  this->ProcessObject::SetNthOutput(0, img.GetPointer());
}
  
template <class TScalarType, unsigned int TImageDimension>
typename Relabeler<TScalarType, TImageDimension>::DataObjectPointer
Relabeler<TScalarType, TImageDimension>
::MakeOutput(unsigned int itkNotUsed(idx))
{
  return static_cast<DataObject*>(ImageType::New().GetPointer());
}
  
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GenerateData()
{
  this->UpdateProgress(0.0);
  typename ImageType::Pointer input  = this->GetInputImage();
  typename ImageType::Pointer output  = this->GetOutputImage();

  typename SegmentTreeType::Pointer tree = this->GetInputSegmentTree();
  typename SegmentTreeType::Iterator it;
  EquivalencyTable::Pointer eqT = EquivalencyTable::New();

  output->SetBufferedRegion(output->GetRequestedRegion());
  output->Allocate();
  //
  // Copy input to output
  //
  ImageRegionIterator<ImageType> it_a(input, output->GetRequestedRegion());
  ImageRegionIterator<ImageType> it_b(output, output->GetRequestedRegion());
  it_a = it_a.Begin();
  it_b = it_b.Begin();
  while (! it_a.IsAtEnd() )
    {
    it_b.Set(it_a.Get());
    ++it_a;
    ++it_b;
    }

  this->UpdateProgress(0.1);
  //
  // Extract the merges up the requested level
  //
  if (tree->Empty() == true )
    {
    // itkWarningMacro("Empty input.  No relabeling was done.");
    return;
    }
  ScalarType max = tree->Back().saliency;
  ScalarType mergeLimit = static_cast<ScalarType>(m_FloodLevel * max);

  this->UpdateProgress(0.5);
  
  it = tree->Begin();
  while ( it != tree->End() && (*it).saliency <= mergeLimit )
    {
    eqT->Add((*it).from, (*it).to);
    it++;      
    } 

  SegmenterType::RelabelImage(output, output->GetRequestedRegion(), eqT);
  this->UpdateProgress(1.0);
}

template <class TScalarType, unsigned int ImageDimension>
void Relabeler<TScalarType, ImageDimension>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // get pointers to the input and output
  typename ImageType::Pointer  inputPtr  = this->GetInputImage();
  typename ImageType::Pointer outputPtr = this->GetOutputImage();
  
  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  /*
    // we need to compute the input requested region (size and start index)
    int i;
    const typename ImageType::SizeType& outputRequestedRegionSize
    = outputPtr->GetRequestedRegion().GetSize();
    const typename ImageType::IndexType& outputRequestedRegionStartIndex
    = outputPtr->GetRequestedRegion().GetIndex();
    
    typename InputImageType::SizeType  inputRequestedRegionSize;
    typename InputImageType::IndexType inputRequestedRegionStartIndex;
    
    const typename InputImageType::SizeType  inputLargestPossibleRegionSize
    = inputPtr->GetLargestPossibleRegion().GetSize();
    const typename InputImageType::IndexType inputLargestPossibleRegionStartIndex
    = inputPtr->GetLargestPossibleRegion().GetIndex();
    
    //  typename InputImageType::RegionType reg1 = inputPtr->GetRequestedRegion();
    //  reg1.PadByRadius(1);
    ///  
    // std::cout << reg1 << std::endl;
    
    //  exit(0);
    
    long crop=0;
    for (i = 0; i < TInputImage::ImageDimension; i++)
    {
    
    // Calculate a new region that is padded by 1 on each face
    inputRequestedRegionSize[i]
    = outputRequestedRegionSize[i] + 2;
    inputRequestedRegionStartIndex[i]
    = outputRequestedRegionStartIndex[i] - 1;
    
    // crop the requested region to the largest possible region
    
    
    // first check the start index
    if (inputRequestedRegionStartIndex[i]
    < inputLargestPossibleRegionStartIndex[i])
    {
    // how much do we need to adjust
    crop = inputLargestPossibleRegionStartIndex[i]
    - inputRequestedRegionStartIndex[i];
    
    // adjust the start index and the size of the requested region
    inputRequestedRegionStartIndex[i] += crop;
    inputRequestedRegionSize[i] -= crop;
    }
    // now check the final size
    if (inputRequestedRegionStartIndex[i] + inputRequestedRegionSize[i] 
    > inputLargestPossibleRegionStartIndex[i]
    + inputLargestPossibleRegionSize[i])
    {
    // how much do we need to adjust
    crop = inputRequestedRegionStartIndex[i] + inputRequestedRegionSize[i] 
    - inputLargestPossibleRegionStartIndex[i]
    - inputLargestPossibleRegionSize[i];
    
    // adjust the size
    inputRequestedRegionSize[i] -= crop;
    }
    }
    
    typename TInputImage::RegionType inputRequestedRegion;
    inputRequestedRegion.SetSize( inputRequestedRegionSize );
    inputRequestedRegion.SetIndex( inputRequestedRegionStartIndex );
    
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    
  */  
  // 
  // FOR NOW WE'LL JUST SET THE INPUT REGION TO THE OUTPUT REGION
  //
  inputPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
}
  
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GenerateOutputRequestedRegion(DataObject *output)
{
  // Only the Image output need to be propagated through.
  // No choice but to use RTTI here.
  // All Image outputs set to the same RequestedRegion  other
  // outputs ignored.
  ImageBase<ImageDimension> *imgData;
  ImageBase<ImageDimension> *op;
  imgData = dynamic_cast<ImageBase<ImageDimension> * >(output);

  if (imgData)
    {
    std::vector<ProcessObject::DataObjectPointer>::size_type idx;
    for (idx = 0; idx < this->GetOutputs().size(); ++idx)
      {
      if (this->GetOutputs()[idx] && this->GetOutputs()[idx] != output)
        {
        op = dynamic_cast<ImageBase<ImageDimension> *>(this->GetOutputs()[idx].GetPointer());
        if (op) this->GetOutputs()[idx]->SetRequestedRegion(output);
        }
      }
    }
}

/*
 * 
 */
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GraftOutput(ImageType *graft)
{
  this->GraftNthOutput(0, graft);
}

/*
 * 
 */
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GraftNthOutput(unsigned int idx, ImageType *graft)
{
  typedef typename ImageType::Pointer OutputImagePointer;
  
  if (idx < this->GetNumberOfOutputs())
    {
    OutputImagePointer output = this->GetOutputImage();

    if (output && graft)
      {
      // grab a handle to the bulk data of the specified data object
      output->SetPixelContainer( graft->GetPixelContainer() );
      
      // copy the region ivars of the specified data object
      output->SetRequestedRegion( graft->GetRequestedRegion() );
      output->SetLargestPossibleRegion( graft->GetLargestPossibleRegion() );
      output->SetBufferedRegion( graft->GetBufferedRegion() );
      
      // copy the meta-information
      output->CopyInformation( graft );
      }
    }
}

template<class TScalarType, unsigned int TImageDimension>
void
Relabeler<TScalarType, TImageDimension>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << indent << "FloodLevel: " << m_FloodLevel << std::endl;
}

}// end namespace watershed
}// end namespace itk

#endif