1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkWatershedRelabeler.txx,v $
Language: C++
Date: $Date: 2004-02-29 13:33:04 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkWatershedRelabeler_txx
#define __itkWatershedRelabeler_txx
#include "itkImageRegionIterator.h"
namespace itk
{
namespace watershed
{
template <class TScalarType, unsigned int TImageDimension>
Relabeler<TScalarType, TImageDimension>::
Relabeler() : m_FloodLevel(0.0)
{
typename ImageType::Pointer img
= static_cast<ImageType*>(this->MakeOutput(0).GetPointer());
this->SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput(0, img.GetPointer());
}
template <class TScalarType, unsigned int TImageDimension>
typename Relabeler<TScalarType, TImageDimension>::DataObjectPointer
Relabeler<TScalarType, TImageDimension>
::MakeOutput(unsigned int itkNotUsed(idx))
{
return static_cast<DataObject*>(ImageType::New().GetPointer());
}
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GenerateData()
{
this->UpdateProgress(0.0);
typename ImageType::Pointer input = this->GetInputImage();
typename ImageType::Pointer output = this->GetOutputImage();
typename SegmentTreeType::Pointer tree = this->GetInputSegmentTree();
typename SegmentTreeType::Iterator it;
EquivalencyTable::Pointer eqT = EquivalencyTable::New();
output->SetBufferedRegion(output->GetRequestedRegion());
output->Allocate();
//
// Copy input to output
//
ImageRegionIterator<ImageType> it_a(input, output->GetRequestedRegion());
ImageRegionIterator<ImageType> it_b(output, output->GetRequestedRegion());
it_a = it_a.Begin();
it_b = it_b.Begin();
while (! it_a.IsAtEnd() )
{
it_b.Set(it_a.Get());
++it_a;
++it_b;
}
this->UpdateProgress(0.1);
//
// Extract the merges up the requested level
//
if (tree->Empty() == true )
{
// itkWarningMacro("Empty input. No relabeling was done.");
return;
}
ScalarType max = tree->Back().saliency;
ScalarType mergeLimit = static_cast<ScalarType>(m_FloodLevel * max);
this->UpdateProgress(0.5);
it = tree->Begin();
while ( it != tree->End() && (*it).saliency <= mergeLimit )
{
eqT->Add((*it).from, (*it).to);
it++;
}
SegmenterType::RelabelImage(output, output->GetRequestedRegion(), eqT);
this->UpdateProgress(1.0);
}
template <class TScalarType, unsigned int ImageDimension>
void Relabeler<TScalarType, ImageDimension>
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
typename ImageType::Pointer inputPtr = this->GetInputImage();
typename ImageType::Pointer outputPtr = this->GetOutputImage();
if ( !inputPtr || !outputPtr )
{
return;
}
/*
// we need to compute the input requested region (size and start index)
int i;
const typename ImageType::SizeType& outputRequestedRegionSize
= outputPtr->GetRequestedRegion().GetSize();
const typename ImageType::IndexType& outputRequestedRegionStartIndex
= outputPtr->GetRequestedRegion().GetIndex();
typename InputImageType::SizeType inputRequestedRegionSize;
typename InputImageType::IndexType inputRequestedRegionStartIndex;
const typename InputImageType::SizeType inputLargestPossibleRegionSize
= inputPtr->GetLargestPossibleRegion().GetSize();
const typename InputImageType::IndexType inputLargestPossibleRegionStartIndex
= inputPtr->GetLargestPossibleRegion().GetIndex();
// typename InputImageType::RegionType reg1 = inputPtr->GetRequestedRegion();
// reg1.PadByRadius(1);
///
// std::cout << reg1 << std::endl;
// exit(0);
long crop=0;
for (i = 0; i < TInputImage::ImageDimension; i++)
{
// Calculate a new region that is padded by 1 on each face
inputRequestedRegionSize[i]
= outputRequestedRegionSize[i] + 2;
inputRequestedRegionStartIndex[i]
= outputRequestedRegionStartIndex[i] - 1;
// crop the requested region to the largest possible region
// first check the start index
if (inputRequestedRegionStartIndex[i]
< inputLargestPossibleRegionStartIndex[i])
{
// how much do we need to adjust
crop = inputLargestPossibleRegionStartIndex[i]
- inputRequestedRegionStartIndex[i];
// adjust the start index and the size of the requested region
inputRequestedRegionStartIndex[i] += crop;
inputRequestedRegionSize[i] -= crop;
}
// now check the final size
if (inputRequestedRegionStartIndex[i] + inputRequestedRegionSize[i]
> inputLargestPossibleRegionStartIndex[i]
+ inputLargestPossibleRegionSize[i])
{
// how much do we need to adjust
crop = inputRequestedRegionStartIndex[i] + inputRequestedRegionSize[i]
- inputLargestPossibleRegionStartIndex[i]
- inputLargestPossibleRegionSize[i];
// adjust the size
inputRequestedRegionSize[i] -= crop;
}
}
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion.SetSize( inputRequestedRegionSize );
inputRequestedRegion.SetIndex( inputRequestedRegionStartIndex );
inputPtr->SetRequestedRegion( inputRequestedRegion );
*/
//
// FOR NOW WE'LL JUST SET THE INPUT REGION TO THE OUTPUT REGION
//
inputPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
}
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GenerateOutputRequestedRegion(DataObject *output)
{
// Only the Image output need to be propagated through.
// No choice but to use RTTI here.
// All Image outputs set to the same RequestedRegion other
// outputs ignored.
ImageBase<ImageDimension> *imgData;
ImageBase<ImageDimension> *op;
imgData = dynamic_cast<ImageBase<ImageDimension> * >(output);
if (imgData)
{
std::vector<ProcessObject::DataObjectPointer>::size_type idx;
for (idx = 0; idx < this->GetOutputs().size(); ++idx)
{
if (this->GetOutputs()[idx] && this->GetOutputs()[idx] != output)
{
op = dynamic_cast<ImageBase<ImageDimension> *>(this->GetOutputs()[idx].GetPointer());
if (op) this->GetOutputs()[idx]->SetRequestedRegion(output);
}
}
}
}
/*
*
*/
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GraftOutput(ImageType *graft)
{
this->GraftNthOutput(0, graft);
}
/*
*
*/
template <class TScalarType, unsigned int TImageDimension>
void Relabeler<TScalarType, TImageDimension>
::GraftNthOutput(unsigned int idx, ImageType *graft)
{
typedef typename ImageType::Pointer OutputImagePointer;
if (idx < this->GetNumberOfOutputs())
{
OutputImagePointer output = this->GetOutputImage();
if (output && graft)
{
// grab a handle to the bulk data of the specified data object
output->SetPixelContainer( graft->GetPixelContainer() );
// copy the region ivars of the specified data object
output->SetRequestedRegion( graft->GetRequestedRegion() );
output->SetLargestPossibleRegion( graft->GetLargestPossibleRegion() );
output->SetBufferedRegion( graft->GetBufferedRegion() );
// copy the meta-information
output->CopyInformation( graft );
}
}
}
template<class TScalarType, unsigned int TImageDimension>
void
Relabeler<TScalarType, TImageDimension>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "FloodLevel: " << m_FloodLevel << std::endl;
}
}// end namespace watershed
}// end namespace itk
#endif
|