File: itkAdaptiveHistogramEqualizationImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (346 lines) | stat: -rw-r--r-- 10,570 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkAdaptiveHistogramEqualizationImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-18 20:07:32 $
  Version:   $Revision: 1.28 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkAdaptiveHistogramEqualizationImageFilter_txx
#define _itkAdaptiveHistogramEqualizationImageFilter_txx

#include <map>
#include <set>
#include "vnl/vnl_math.h"

#include "itkAdaptiveHistogramEqualizationImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkProgressReporter.h"

namespace itk
{

template <class TImageType>
float
AdaptiveHistogramEqualizationImageFilter<TImageType>
::CumulativeFunction(float u, float v)
{
  // Calculate cumulative function
  float s, ad;
  s = vnl_math_sgn(u-v);
  ad = vnl_math_abs(2.0*(u-v));
  
  return 0.5*s*vcl_pow(ad,m_Alpha) - m_Beta*0.5*s*ad + m_Beta*u;
}

template <class TImageType>
void
AdaptiveHistogramEqualizationImageFilter<TImageType>
::GenerateData()
{
  
  typename ImageType::ConstPointer input = this->GetInput();
  typename ImageType::Pointer output = this->GetOutput();
  
  // Allocate the output
  this->AllocateOutputs();
  
  unsigned int i;

  //Set the kernel value of PLAHE algorithm
  float kernel = 1;
  for (i = 0; i < ImageDimension; i++)
    {
    kernel = kernel * (2*m_Radius[i]+1);
    }
  kernel = 1/kernel;

  // Iterator which traverse the input
  ImageRegionConstIterator<ImageType> itInput(input,
                                              input->GetRequestedRegion());

  // Calculate min and max gray level of an input image
  double min = static_cast<double>(itInput.Get());
  double max = min;
  double value;
  while( !itInput.IsAtEnd() )
    {
    value = static_cast<double>(itInput.Get());  
    if ( min > value )
      {
      min = value;
      }
    if ( max < value )
      {
      max = value;
      }
    ++itInput;
    }

  
  // Allocate a float type image which has the same size with an input image.
  // This image store normalized pixel values [-0.5 0.5] of the input image.
  typedef Image<float, ImageDimension> ImageFloatType;
  typename ImageFloatType::Pointer inputFloat = ImageFloatType::New();
  inputFloat->SetRegions(input->GetRequestedRegion());
  inputFloat->Allocate();


  // Scale factors to convert back and forth to the [-0.5, 0.5] and
  // original gray level range
  float iscale = max - min;
  float scale = (float)1/iscale;
  
  // Normalize input image to [-0.5 0.5] gray level and store in
  // inputFloat. AdaptiveHistogramEqualization only use float type
  // image which has gray range [-0.5 0.5]
  ImageRegionIterator<ImageFloatType> itFloat(inputFloat,
                                         input->GetRequestedRegion()); 

  itInput.GoToBegin(); // rewind the previous input iterator
  while( !itInput.IsAtEnd() )
    {
    itFloat.Set( scale*(itInput.Get() - min)-0.5 );
    ++itFloat;
    ++itInput;
    }
    
  // Calculate cumulative array which will store the value of
  // cumulative function. During the AdaptiveHistogramEqualization
  // process, cumulative function will not be calculated, instead the
  // cumulative function will be pre-calculated and result will be
  // stored in cumulative array.  The cumulative array will be
  // referenced during AdaptiveHistogramEqualization processing.  This
  // pre-calculation can reduce computation time even though this
  // method uses a huge array.  If the cumulative array can not be
  // assigned, the cumulative function will be calculated each time.
  //
  //
  bool cachedCumulative = false;

  typedef std::set<float> FloatSetType;
  FloatSetType row;

  typedef std::map < std::pair<float, float>, float > ArrayMapType;
  ArrayMapType CumulativeArray;

  if (m_UseLookupTable)
    {
    // determine what intensities are used on the input
    itFloat.GoToBegin(); // rewind the iterator for the normalized image
    while ( !itFloat.IsAtEnd() )
      {
      row.insert( itFloat.Get() );
      ++itFloat;
      }
    // only cache the array if it can be done without taking too much space
    if (row.size() < (input->GetRequestedRegion().GetNumberOfPixels() / 10))
      {
      cachedCumulative = true;
      }
    else
      {
      cachedCumulative = false;
      row.clear();
      }
    
    if (cachedCumulative)
      {
      // calculate cumulative function for each possible pairing of
      // intensities and store result in cumulative array
      FloatSetType::iterator itU, itV;
      ArrayMapType::key_type key;
      for (itU = row.begin(); itU != row.end(); ++itU)
        {
        key.first = *itU;
        for (itV = row.begin(); itV != row.end(); ++itV)
          {
          key.second = *itV;
          CumulativeArray.insert( ArrayMapType::value_type( key,
                                                            this->CumulativeFunction( *itU, *itV )) );
          }
        }
      }
    }

  // Setup for processing the image
  //
  ZeroFluxNeumannBoundaryCondition<ImageFloatType> nbc;
  ConstNeighborhoodIterator<ImageFloatType> bit;

  // Find the data-set boundary "faces"
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageFloatType>::FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageFloatType> bC;
  faceList = bC(inputFloat, output->GetRequestedRegion(), m_Radius);

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageFloatType>::FaceListType::iterator fit;

  // Map stores (number of pixel)/(window size) for each gray value. 
  typedef std::map<float, float> MapType;
  MapType count;
  MapType::iterator itMap;
  
  ProgressReporter progress(this,0,output->GetRequestedRegion().GetNumberOfPixels());

  // Process each faces.  These are N-d regions which border
  // the edge of the buffer.
  for (fit=faceList.begin(); fit != faceList.end(); ++fit)
    {
    // Create a neighborhood iterator for the normalized image for the
    // region for this face
    bit = ConstNeighborhoodIterator<ImageFloatType>(m_Radius,
                                                    inputFloat, *fit);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();
    unsigned int neighborhoodSize = bit.Size();

    // iterator for the output for this face
    ImageRegionIterator<ImageType> itOut(output, *fit);

    // iterate over the region for this face
    ArrayMapType::key_type key;
    while ( ! bit.IsAtEnd() )
      {
      // AdaptiveHistogramEqualization algorithm
      //
      //
      float f;
      float sum;

      // "Histogram the window"
      count.clear();
      for (i = 0; i < neighborhoodSize; ++i)
        {
        f = bit.GetPixel(i);
        itMap = count.find( f );
        if ( itMap != count.end() )
          {
          count[f] = count[f] + kernel;
          }
        else
          {
          count.insert(MapType::value_type(f,kernel));
          }
        }
        
      typedef typename ImageType::PixelType PixelType;    
        
      // if we cached the cumulative array
      // if not, use CumulativeFunction()
      if (cachedCumulative)
        {
        sum = 0;
        itMap = count.begin();
        f = bit.GetCenterPixel();
        key.first = f;
        while ( itMap != count.end()  )
          {
          key.second = itMap->first;
          sum = sum
            + itMap->second * CumulativeArray[key];
          ++itMap;
          }
        itOut.Set( (PixelType)(iscale*(sum+0.5) + min) );
        }
      else
        {
        sum = 0;
        itMap = count.begin();
        f = bit.GetCenterPixel();
        while ( itMap != count.end()  )
          {
          sum = sum + itMap->second*CumulativeFunction(f,itMap->first);
          ++itMap;
          }
        itOut.Set((PixelType)(iscale*(sum+0.5) + min));
        }

      // move the neighborhood
      ++bit;
      ++itOut;
      progress.CompletedPixel();
      }
    }
    
}


template <class TImageType>
void
AdaptiveHistogramEqualizationImageFilter<TImageType>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // get pointers to the input and output
  typename Superclass::InputImagePointer inputPtr = 
    const_cast< TImageType * >( this->GetInput() );
  typename Superclass::OutputImagePointer outputPtr = this->GetOutput();
  
  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TImageType::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius( m_Radius );

  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
    {
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.

    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    
    // build an exception
    InvalidRequestedRegionError e(__FILE__, __LINE__);
    e.SetLocation(ITK_LOCATION);
    e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
    e.SetDataObject(inputPtr);
    throw e;
    }
}


template <class TImageType>
void
AdaptiveHistogramEqualizationImageFilter<TImageType>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << "Radius: " << m_Radius << std::endl;
  os << "Alpha: " << m_Alpha << std::endl;
  os << "Beta: " << m_Beta << std::endl;
  os << "UseLookupTable: " << (m_UseLookupTable ? "On" : "Off") << std::endl;
}
} // end namespace


#endif