File: itkBilateralImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (247 lines) | stat: -rw-r--r-- 9,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkBilateralImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2006-03-24 16:03:16 $
  Version:   $Revision: 1.19 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkBilateralImageFilter_h
#define __itkBilateralImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkFixedArray.h"
#include "itkNeighborhoodIterator.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhood.h"

namespace itk
{
/**
 * \class BilateralImageFilter
 * \brief Blurs an image while preserving edges
 *
 * This filter uses bilateral filtering to blur an image using both
 * domain and range "neighborhoods". Pixels that are close to a pixel
 * in the image domain and similar to a pixel in the image range are
 * used to calculate the filtered value. Two gaussian kernels (one in
 * the image domain and one in the image range) are used to smooth
 * the image. The result is an image that is smoothed in homogeneous
 * regions yet has edges preserved. The result is similar to
 * anisotropic diffusion but the implementation in non-iterative.
 * Another benefit to bilateral filtering is that any distance metric
 * can be used for kernel smoothing the image range.  Hence, color
 * images can be smoothed as vector images, using the CIE distances
 * between intensity values as the similarity metric (the Gaussian
 * kernel for the image domain is evaluated using CIE distances).
 * A separate version of this filter will be designed for color
 * and vector images.
 *
 * Bilateral filtering is capable of reducing the noise in an image
 * by an order of magnitude while maintaining edges.
 *
 * The bilateral operator used here was described by Tomasi and
 * Manduchi (Bilateral Filtering for Gray and ColorImages. IEEE
 * ICCV. 1998.)
 *
 * \sa GaussianOperator
 * \sa AnisotropicDiffusionImageFilter
 * \sa Image
 * \sa Neighborhood
 * \sa NeighborhoodOperator
 * 
 * \ingroup ImageEnhancement 
 * \ingroup ImageFeatureExtraction 
 * \todo Support color images
 * \todo Support vector images
 */

template <class TInputImage, class TOutputImage >
class ITK_EXPORT BilateralImageFilter :
    public ImageToImageFilter< TInputImage, TOutputImage > 
{
public:
  /** Standard class typedefs. */
  typedef BilateralImageFilter Self;
  typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(BilateralImageFilter, ImageToImageFilter);
  
  /** Image type information. */
  typedef TInputImage  InputImageType;
  typedef TOutputImage OutputImageType;

  /** Superclass typedefs. */
  typedef typename Superclass::OutputImageRegionType OutputImageRegionType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  typedef typename TOutputImage::PixelType OutputPixelType;
  typedef typename TOutputImage::InternalPixelType OutputInternalPixelType;
  typedef typename NumericTraits<OutputPixelType>::RealType OutputPixelRealType;
  typedef typename TInputImage::PixelType InputPixelType;
  typedef typename TInputImage::InternalPixelType InputInternalPixelType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TOutputImage::ImageDimension);
  
  /** Typedef of double containers */
  typedef FixedArray<double, itkGetStaticConstMacro(ImageDimension)> ArrayType;

  /** Neighborhood iterator types. */
  typedef ConstNeighborhoodIterator<TInputImage> 
  NeighborhoodIteratorType ;
  
  /** Kernel typedef. */
  typedef
  Neighborhood<double, itkGetStaticConstMacro(ImageDimension)> KernelType;
  typedef typename KernelType::SizeType SizeType;
  
  /** Kernel iterator. */
  typedef typename KernelType::Iterator KernelIteratorType ;
  typedef typename KernelType::ConstIterator KernelConstIteratorType ;

  /** Gaussian image type */
  typedef
  Image<double, itkGetStaticConstMacro(ImageDimension)> GaussianImageType;
  
  /** Standard get/set macros for filter parameters.
   * DomainSigma is specified in the same units as the Image spacing.
   * RangeSigma is specified in the units of intensity. */
  itkSetMacro(DomainSigma, ArrayType);
  itkGetMacro(DomainSigma, const ArrayType);
  itkSetMacro(RangeSigma, double);
  itkGetMacro(RangeSigma, double);
  itkGetMacro(FilterDimensionality, unsigned int);
  itkSetMacro(FilterDimensionality, unsigned int);
  
  /** Convenience get/set methods for setting all domain parameters to the
   * same values.  */
  void SetDomainSigma(const double v)
  {
    m_DomainSigma.Fill(v);
  }

  /** Control automatic kernel size determination. When
   * automatic is "on", the kernel size is a function of the domain
   * sigma. When automatic is "off", the kernel size is whatever is
   * specified by the user.
   * \sa SetRadius() */
  itkBooleanMacro(AutomaticKernelSize);
  itkGetMacro(AutomaticKernelSize, bool);
  itkSetMacro(AutomaticKernelSize, bool);

  /** Set/Get the kernel radius, specified in pixels.  This parameter
   * is used only when AutomaticNeighborhoodSize is "off". */
  void SetRadius(const unsigned long);
  itkSetMacro(Radius, SizeType);
  itkGetConstReferenceMacro(Radius, SizeType);
  
  
  /** Set/Get the number of samples in the approximation to the Gaussian
   * used for the range smoothing. Samples are only generated in the
   * range of [0, 4*m_RangeSigma]. Default is 100. */
  itkSetMacro(NumberOfRangeGaussianSamples, unsigned long);
  itkGetMacro(NumberOfRangeGaussianSamples, unsigned long);

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(OutputHasNumericTraitsCheck,
                  (Concept::HasNumericTraits<OutputPixelType>));
  /** End concept checking */
#endif

protected:
  /** Constructor.  Default value for DomainSigma is 4. Default value
   * RangeSigma is 50. */
  BilateralImageFilter()
  {
    m_Radius.Fill(1);
    m_AutomaticKernelSize = true;
    m_DomainSigma.Fill(4.0);
    m_RangeSigma = 50.0;
    m_FilterDimensionality = ImageDimension;
    m_NumberOfRangeGaussianSamples = 100;
    m_DynamicRange = 0.0;
    m_DynamicRangeUsed = 0.0;
    m_DomainMu = 2.5;  // keep small to keep kernels small
    m_RangeMu = 4.0;   // can be bigger then DomainMu since we only
                       // index into a single table

  }
  virtual ~BilateralImageFilter() {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Do some setup before the ThreadedGenerateData */
  void BeforeThreadedGenerateData();
  
  /** Standard pipeline method. This filter is implemented as a multi-threaded
   * filter. */
  void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
                            int threadId); 

  /** BilateralImageFilter needs a larger input requested region than
   * the output requested region (larger by the size of the domain
   * Gaussian kernel).  As such, BilateralImageFilter needs to provide
   * an implementation for GenerateInputRequestedRegion() in order to
   * inform the pipeline execution model.  
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);

  
private:
  BilateralImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  /** The standard deviation of the gaussian blurring kernel in the image
      range. Units are intensity. */
  double m_RangeSigma;
  
  /** The standard deviation of the gaussian blurring kernel in each
      dimensional direction. Units match image spacing units. */
  ArrayType m_DomainSigma;

  /** Multiplier used to define statistical thresholds.  Gaussians are
   * only evaluated to m_DomainMu*m_DomainSigma or m_RangeMu*m_RangeSigma. */
  double m_DomainMu;
  double m_RangeMu;

  /** Number of dimensions to process. Default is all dimensions */
  unsigned int m_FilterDimensionality;

  /** Gaussian kernel used for smoothing in the spatial domain */
  KernelType m_GaussianKernel;
  SizeType   m_Radius;
  bool       m_AutomaticKernelSize;

  /** Variables for the lookup table of range gaussian values */
  unsigned long m_NumberOfRangeGaussianSamples;
  double m_DynamicRange;
  double m_DynamicRangeUsed;
  std::vector<double> m_RangeGaussianTable;
};
  
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkBilateralImageFilter.txx"
#endif

#endif