File: itkBinaryErodeImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (503 lines) | stat: -rw-r--r-- 18,096 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkBinaryErodeImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-12 20:27:49 $
  Version:   $Revision: 1.25 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkBinaryErodeImageFilter_txx
#define __itkBinaryErodeImageFilter_txx

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkConstantBoundaryCondition.h"
#include "itkOffset.h"
#include "itkProgressReporter.h"
#include "itkBinaryErodeImageFilter.h"

namespace itk
{
 
template <class TInputImage, class TOutputImage, class TKernel>
BinaryErodeImageFilter<TInputImage, TOutputImage, TKernel>
::BinaryErodeImageFilter()
{
  this->m_BoundaryToForeground = true;
}


template< class TInputImage, class TOutputImage, class TKernel>
void
BinaryErodeImageFilter< TInputImage, TOutputImage, TKernel>
::GenerateData()
{
  this->AllocateOutputs();

  unsigned int i,j;
    
  // Retrieve input and output pointers
  typename OutputImageType::Pointer output = this->GetOutput();
  typename InputImageType::ConstPointer input  = this->GetInput();
  
  // Get values from superclass
  InputPixelType foregroundValue = this->GetForegroundValue();
  InputPixelType backgroundValue = this->GetBackgroundValue();
  KernelType kernel = this->GetKernel();
  InputSizeType radius = this->GetRadius();
  typename TInputImage::RegionType inputRegion = input->GetBufferedRegion();
  typename TOutputImage::RegionType outputRegion = output->GetBufferedRegion();
  
  // compute the size of the temp image. It is needed to create the progress
  // reporter.
  // The tmp image needs to be large enough to support:
  //   1. The size of the structuring element
  //   2. The size of the connectivity element (typically one)
  typename TInputImage::RegionType tmpRequestedRegion = outputRegion;
  typename TInputImage::RegionType paddedInputRegion
    = input->GetBufferedRegion();
  paddedInputRegion.PadByRadius( radius ); // to support boundary values
  InputSizeType padBy = radius;
  for (i=0; i < KernelDimension; ++i)
    {
    padBy[i] = (padBy[i]>kernel.GetRadius(i) ? padBy[i] : kernel.GetRadius(i));
    }
  tmpRequestedRegion.PadByRadius( padBy );
  tmpRequestedRegion.Crop( paddedInputRegion );

  typename TInputImage::RegionType requiredInputRegion
    = input->GetBufferedRegion();
  requiredInputRegion.Crop( tmpRequestedRegion );

  // Support progress methods/callbacks
  // Setup a progress reporter.  We have 4 stages to the algorithm so
  // pretend we have 4 times the number of pixels
  ProgressReporter progress(this, 0,
                            outputRegion.GetNumberOfPixels() * 3
                            + tmpRequestedRegion.GetNumberOfPixels()
                            + requiredInputRegion.GetNumberOfPixels() );
  
  // Allocate and reset output. We copy the input to the output,
  // except for pixels with DilateValue.  These pixels are initially
  // replaced with BackgroundValue and potentially replaced later with
  // DilateValue as the Minkowski sums are performed.
  ImageRegionIterator<OutputImageType> outIt( output, outputRegion );
  //ImageRegionConstIterator<InputImageType> inIt( input, outputRegion );

  for( outIt.GoToBegin(); !outIt.IsAtEnd(); ++outIt )
    {
    outIt.Set( foregroundValue );
    progress.CompletedPixel();
    }


  // Create the temp image for surface encoding
  // The temp image size is equal to the output requested region for thread
  // padded by max( connectivity neighborhood radius, SE kernel radius ).
  typedef itk::Image<unsigned char, TInputImage::ImageDimension> TempImageType;
  typename TempImageType::Pointer tmpImage = TempImageType::New();

  // Define regions of temp image
  tmpImage->SetRegions( tmpRequestedRegion );
  
  // Allocation.
  // Pay attention to the fact that here, the output is still not
  // allocated (so no extra memory needed for tmp image, if you
  // consider that you reserve som memory space for output)
  tmpImage->Allocate();
  
  // First Stage
  // Copy the input image to the tmp image.
  // Tag the tmp Image.
  //     zero means background
  //     one means pixel on but not treated
  //     two means border pixel
  //     three means inner pixel
  static const unsigned char backgroundTag  = 0;
  static const unsigned char onTag          = 1;
  static const unsigned char borderTag      = 2;
  static const unsigned char innerTag       = 3;
  
  if( !this->m_BoundaryToForeground )
    { tmpImage->FillBuffer( onTag ); }
  else
    { tmpImage->FillBuffer( backgroundTag ); }

  // Iterators on input and tmp image
  // iterator on input
  ImageRegionConstIterator<TInputImage> iRegIt( input, requiredInputRegion );
  // iterator on tmp image
  ImageRegionIterator<TempImageType> tmpRegIt( tmpImage, requiredInputRegion );

  for( iRegIt.GoToBegin(), tmpRegIt.GoToBegin();
    !tmpRegIt.IsAtEnd();
    ++iRegIt, ++tmpRegIt )
    {
    OutputPixelType pxl = iRegIt.Get();
    if( pxl != foregroundValue )
      { tmpRegIt.Set( onTag ); }
    else
      {
      // by default if it is not foreground, consider
      // it as background
      tmpRegIt.Set( backgroundTag ); 
      }
    progress.CompletedPixel();
    }

  // Second stage
  // Border tracking and encoding

  // Need to record index, use an iterator with index
  // Define iterators that will traverse the OUTPUT requested region
  // for thread and not the padded one. The tmp image has been padded
  // because in that way we will take care carefully at boundary
  // pixels of output requested region.  Take care means that we will
  // check if a boundary pixel is or not a border pixel.
  ImageRegionIteratorWithIndex<TempImageType>
    tmpRegIndexIt( tmpImage, tmpRequestedRegion );

  ConstNeighborhoodIterator<TempImageType>
    oNeighbIt( radius, tmpImage, tmpRequestedRegion );
  
  // Define boundaries conditions
  ConstantBoundaryCondition<TempImageType> cbc;
  cbc.SetConstant( backgroundTag );
  oNeighbIt.OverrideBoundaryCondition(&cbc);
  
  unsigned int neighborhoodSize = oNeighbIt.Size();
  unsigned int centerPixelCode = neighborhoodSize / 2;
  
  std::queue<IndexType> propagQueue;

  // Neighborhood iterators used to track the surface.
  //
  // Note the region specified for the first neighborhood iterator is
  // the requested region for the tmp image not the output image. This
  // is necessary because the NeighborhoodIterator relies on the
  // specified region to determine if you will ever query a boundary
  // condition pixel.  Since we call SetLocation on the neighbor of a
  // specified pixel, we have to set the region for the interator to
  // include any pixel we may set our location to.
  NeighborhoodIterator<TempImageType>
    nit( radius, tmpImage, tmpRequestedRegion );
  nit.OverrideBoundaryCondition(&cbc);
  nit.GoToBegin();

  ConstNeighborhoodIterator<TempImageType>
    nnit( radius, tmpImage, tmpRequestedRegion );
  nnit.OverrideBoundaryCondition(&cbc);
  nnit.GoToBegin();
  
  for( tmpRegIndexIt.GoToBegin(), oNeighbIt.GoToBegin();
        !tmpRegIndexIt.IsAtEnd();
        ++tmpRegIndexIt, ++oNeighbIt )
    {

    unsigned char tmpValue = tmpRegIndexIt.Get();

    // Test current pixel: it is active ( on ) or not?
    if( tmpValue == onTag )
      {
      // The current pixel has not been treated previously.  That
      // means that we do not know that it is an inner pixel of a
      // border pixel.
      
      // Test current pixel: it is a border pixel or an inner pixel?
      bool bIsOnContour = false;
      
      for (i = 0; i < neighborhoodSize; ++i)
        {
        // If at least one neighbour pixel is off the center pixel
        // belongs to contour
        if( oNeighbIt.GetPixel( i ) == backgroundTag )
          {
          bIsOnContour = true;
          break;
          }
        }

      if( bIsOnContour )
        {
        // center pixel is a border pixel and due to the parsing, it is also
        // a pixel which belongs to a new border connected component
        // Now we will parse this border thanks to a burn procedure
 
        // mark pixel value as a border pixel
        tmpRegIndexIt.Set( borderTag );
 
        // add it to border container.
        // its code is center pixel code because it is the first pixel
        // of the connected component border

        // paint the structuring element
        typename NeighborIndexContainer::const_iterator itIdx;
        NeighborIndexContainer& idxDifferenceSet
          = this->GetDifferenceSet( centerPixelCode );
        for( itIdx = idxDifferenceSet.begin();
          itIdx != idxDifferenceSet.end();
          ++itIdx )
          {
          IndexType idx = tmpRegIndexIt.GetIndex() + *itIdx;
          if( outputRegion.IsInside( idx ) )
            { output->SetPixel( idx, backgroundValue ); }
          }
 
        // add it to queue
        propagQueue.push( tmpRegIndexIt.GetIndex() );
 
        // now find all the border pixels
        while ( !propagQueue.empty() )
          {
          // Extract pixel index from queue
          IndexType currentIndex = propagQueue.front();
          propagQueue.pop();
   
          nit += currentIndex - nit.GetIndex();
   
          for (i = 0; i < neighborhoodSize; ++i)
            {
            // If pixel has not been already treated and it is a pixel
            // on, test if it is an inner pixel or a border pixel
     
            // Remark: all the pixels outside the image are set to
            // backgroundTag thanks to boundary conditions. That means that if
            // we enter in the next if-statement we are sure that the
            // current neighbour pixel is in the image
            if( nit.GetPixel( i ) == onTag )
              {
              // Check if it is an inner or border neighbour pixel
              // Get index of current neighbour pixel
              IndexType neighbIndex = nit.GetIndex( i );
       
              // Force location of neighbour iterator
              nnit += neighbIndex - nnit.GetIndex();

              bool bIsOnBorder = false;
       
              for( j = 0; j < neighborhoodSize; ++j)
                {
                // If at least one neighbour pixel is off the center
                // pixel belongs to border
                if( nnit.GetPixel(j) == backgroundTag )
                  {
                  bIsOnBorder = true;
                  break;
                  } 
                }
       
       
              if( bIsOnBorder )
                {
                // neighbour pixel is a border pixel
                // mark it
                bool status;
                nit.SetPixel( i, borderTag, status );

                // check whether we could set the pixel.  can only set
                // the pixel if it is within the tmpimage
                if (status) 
                  {
                  // add it to queue
                  propagQueue.push( neighbIndex );
    
                  // paint the structuring element
                  typename NeighborIndexContainer::const_iterator itIndex;
                  NeighborIndexContainer& indexDifferenceSet
                    = this->GetDifferenceSet( i );
                  for( itIndex = indexDifferenceSet.begin();
                    itIndex != indexDifferenceSet.end();
                    ++itIndex )
                    {
                    IndexType idx = neighbIndex + *itIndex;
                    if( outputRegion.IsInside( idx ) )
                      { output->SetPixel( idx, backgroundValue ); }
                    }
                  }
                }
              else
                {
                // neighbour pixel is an inner pixel
                bool status;
                nit.SetPixel( i, innerTag, status );
                }
              
              progress.CompletedPixel();
              } // if( nit.GetPixel( i ) == onTag )
     
            } // for (i = 0; i < neighborhoodSize; ++i)
   
          } // while ( !propagQueue.empty() )
 
        } // if( bIsOnCountour )
      else
        { tmpRegIndexIt.Set( innerTag ); }

      progress.CompletedPixel();
      
      } // if( tmpRegIndexIt.Get() == onTag )
    else if( tmpValue == backgroundTag )
      { progress.CompletedPixel(); }
    // Here, the pixel is a background pixel ( value at 0 ) or an
    // already treated pixel:
    //     2 for border pixel, 3 for inner pixel
    }
  

  // Deallocate tmpImage
  tmpImage->Initialize();
  
  // Third Stage
  // traverse structure of border and SE CCs, and paint output image
  
  // Let's consider the the set of the ON elements of the input image as X.
  // 
  // Let's consider the structuring element as B = {B0, B1, ..., Bn},
  // where Bi denotes a connected component of B.
  //
  // Let's consider bi, i in [0,n], an arbitrary point of Bi.
  //

  // We use hence the next property in order to compute minkoswki
  // addition ( which will be written (+) ):
  //
  // X (+) B = ( Xb0 UNION Xb1 UNION ... Xbn ) UNION ( BORDER(X) (+) B ),
  //
  // where Xbi is the set X translated with respect to vector bi :
  //
  // Xbi = { x + bi, x belongs to X } where BORDER(X) is the extracted
  // border of X ( 8 connectivity in 2D, 26 in 3D )
  
  // Define boundaries conditions
  ConstantBoundaryCondition<TOutputImage> obc;
  obc.SetConstant( backgroundValue );
  
  NeighborhoodIterator<OutputImageType>
    onit( kernel.GetRadius(), output, outputRegion );
  onit.OverrideBoundaryCondition(&obc);
  onit.GoToBegin();

  
  // Paint input image translated with respect to the SE CCs vectors
  // --> "( Xb0 UNION Xb1 UNION ... Xbn )"
  typename Superclass::ComponentVectorConstIterator vecIt;
  typename Superclass::ComponentVectorConstIterator vecBeginIt
    = this->KernelCCVectorBegin();
  typename Superclass::ComponentVectorConstIterator vecEndIt
    = this->KernelCCVectorEnd();
  
  // iterator on output image
  ImageRegionIteratorWithIndex<OutputImageType>
    ouRegIndexIt(output, outputRegion );
  ouRegIndexIt.GoToBegin(); 
  
  // InputRegionForThread is the output region for thread padded by
  // kerne lradius We must traverse this padded region because some
  // border pixel in the added band ( the padded band is the region
  // added after padding ) may be responsible to the painting of some
  // pixel in the non padded region.  This happens typically when a
  // non centered SE is used, a kind of shift is done on the "on"
  // pixels of image. Consequently some pixels in the added band can
  // appear in the current region for thread due to shift effect.
  typename InputImageType::RegionType inputRegionForThread = outputRegion;
  
  // Pad the input region by the kernel
  inputRegionForThread.PadByRadius( kernel.GetRadius() );
  inputRegionForThread.Crop( input->GetBufferedRegion() );  

  if( !this->m_BoundaryToForeground )
    {
    while( !ouRegIndexIt.IsAtEnd() )
      {
      // Retrieve index of current output pixel
      IndexType currentIndex  = ouRegIndexIt.GetIndex();
      for( vecIt = vecBeginIt; vecIt != vecEndIt; ++vecIt )
        {
        // Translate
        IndexType translatedIndex = currentIndex - *vecIt;
  
        // translated index now is an index in input image in the 
        // output requested region padded. Theoretically, this translated
        // index must be inside the padded region.
        // If the pixel in the input image at the translated index
        // has a value equal to the dilate one, this means
        // that the output pixel at currentIndex will be on in the output.
        if( !inputRegionForThread.IsInside( translatedIndex )
          || input->GetPixel( translatedIndex ) != foregroundValue )
          {
          ouRegIndexIt.Set( backgroundValue );
          break; // Do not need to examine other offsets because at least one
          // input pixel has been translated on current output pixel.
          }
        }
  
      ++ouRegIndexIt;
      progress.CompletedPixel();
      }
    }
  else
    {
    while( !ouRegIndexIt.IsAtEnd() )
      {
      IndexType currentIndex  = ouRegIndexIt.GetIndex();
      for( vecIt = vecBeginIt; vecIt != vecEndIt; ++vecIt )
        {
        IndexType translatedIndex = currentIndex - *vecIt;
  
        if( inputRegionForThread.IsInside( translatedIndex )
          && input->GetPixel( translatedIndex ) != foregroundValue )
          {
          ouRegIndexIt.Set( backgroundValue );
          break;
          }
        }
  
      ++ouRegIndexIt;
      progress.CompletedPixel();
      }
    }

  // now, we must to restore the background values
  ImageRegionConstIterator<InputImageType> inIt( input, outputRegion );

  for( inIt.GoToBegin(), outIt.GoToBegin(); !outIt.IsAtEnd(); ++outIt, ++inIt )
    {
    InputPixelType inValue = inIt.Get();
    OutputPixelType outValue = outIt.Get();
    if ( outValue == backgroundValue && inValue != foregroundValue )
      { outIt.Set( static_cast<OutputPixelType>( inValue ) ); }
    progress.CompletedPixel();
    }


}


/**
 * Standard "PrintSelf" method
 */
template <class TInputImage, class TOutput, class TKernel>
void
BinaryErodeImageFilter<TInputImage, TOutput, TKernel>
::PrintSelf( std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf( os, indent );
  os << indent << "Dilate Value: " << static_cast<typename NumericTraits<InputPixelType>::PrintType>( this->GetForegroundValue() ) << std::endl;
}

} // end namespace itk

#endif