1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBinaryMorphologyImageFilter.txx,v $
Language: C++
Date: $Date: 2007-04-24 10:06:57 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkBinaryMorphologyImageFilter_txx
#define __itkBinaryMorphologyImageFilter_txx
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkConstantBoundaryCondition.h"
#include "itkOffset.h"
#include "itkProgressReporter.h"
#include "itkBinaryMorphologyImageFilter.h"
namespace itk
{
template <class TInputImage, class TOutputImage, class TKernel>
BinaryMorphologyImageFilter<TInputImage, TOutputImage, TKernel>
::BinaryMorphologyImageFilter()
: m_Kernel()
{
m_Radius.Fill(1);
m_ForegroundValue = NumericTraits<InputPixelType>::max();
m_BackgroundValue = NumericTraits<OutputPixelType>::NonpositiveMin();
this->SetNumberOfThreads(1);
}
template <class TInputImage, class TOutputImage, class TKernel>
void
BinaryMorphologyImageFilter<TInputImage, TOutputImage, TKernel>
::GenerateInputRequestedRegion() throw (InvalidRequestedRegionError)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
typename Superclass::InputImagePointer inputPtr =
const_cast< TInputImage * >( this->GetInput() );
if ( !inputPtr )
{
return;
}
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// The input image needs to be large enough to support:
// 1. The size of the structuring element
// 2. The size of the connectivity element (typically one)
InputSizeType padBy = m_Radius;
for (unsigned int i=0; i < KernelDimension; ++i)
{
padBy[i] =
(padBy[i]>m_Kernel.GetRadius(i) ? padBy[i] : m_Kernel.GetRadius(i));
}
inputRequestedRegion.PadByRadius( padBy );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
{
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion( inputRequestedRegion );
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
/*e.SetLocation(ITK_LOCATION);*/
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template< class TInputImage, class TOutputImage, class TKernel>
void
BinaryMorphologyImageFilter< TInputImage, TOutputImage, TKernel>
::SetKernel( const KernelType& kernel )
{
// Set Kernel
m_Kernel = kernel;
// Analyse it: the following process depends only on kernel
this->AnalyzeKernel();
}
template< class TInputImage, class TOutputImage, class TKernel>
void
BinaryMorphologyImageFilter< TInputImage, TOutputImage, TKernel>
::AnalyzeKernel( void )
{
// Sure clearing
m_KernelDifferenceSets.clear();
m_KernelCCVector.clear();
std::vector<unsigned int> kernelOnElements;
unsigned long i,k;
// **************************
// Structuring element ( SE ) coding
// **************************
// Get symmetrical structuring element in order to satisfy
// our definition of binary dilation
unsigned long kernelSize = m_Kernel.Size();
unsigned long kernelCenter = kernelSize / 2;
for( i = kernelCenter + 1, k = kernelCenter - 1; i < kernelSize; ++i, --k )
{
typename TKernel::PixelType px = m_Kernel.GetBufferReference()[i];
m_Kernel.GetBufferReference()[i] = m_Kernel.GetBufferReference()[k];
m_Kernel.GetBufferReference()[k] = px;
}
// Store index of SE of ON elements
// It allows us to have a fastest access to ON elements
// of SE Kernel
KernelIteratorType KernelBegin = m_Kernel.Begin();
KernelIteratorType KernelEnd = m_Kernel.End();
KernelIteratorType kernel_it;
for ( i=0, kernel_it=KernelBegin; kernel_it != KernelEnd; ++kernel_it, ++i)
{
if ((*kernel_it) > 0)
{
kernelOnElements.push_back(i);
}
}
// Compute the Nd vector ( called index in case of images...do not
// mistake with index in case of neighbourhood which is only a
// position in a 1 dimensional buffer...! ) of the center element in
// the SE neighbourhood
IndexType centerElementPosition;
for( i = 0; i < TInputImage::ImageDimension; ++i )
{
// position of center in a given direction is the middle of the direction
centerElementPosition[i] = m_Kernel.GetSize(i) / 2;
}
// We have to detect the connected component of the structuring
// element and compute the difference sets in each direction ( 26
// connectivity in 3D for instance )
// Detect all the connected components of the SE.
// ----------------------------------------------
// To do this we convert the SE into a temp image
typedef Image< bool, TInputImage::ImageDimension > BoolImageType;
typename BoolImageType::Pointer tmpSEImage = BoolImageType::New();
tmpSEImage->SetRegions( m_Kernel.GetSize() );
// allocation
tmpSEImage->Allocate();
// copy
ImageRegionIterator<BoolImageType> kernelImageIt;// iterator on image
kernelImageIt = ImageRegionIterator<BoolImageType>(tmpSEImage,
tmpSEImage->GetRequestedRegion());
kernelImageIt.GoToBegin();
kernel_it = KernelBegin;
while( !kernelImageIt.IsAtEnd() )
{
kernelImageIt.Set( *kernel_it > 0 );
++kernelImageIt;
++kernel_it;
}
// boundary conditions
// Out boundary pixels are set to false
ConstantBoundaryCondition<BoolImageType> cbc;
cbc.SetConstant( false );
// Now look for connected component and record one SE element
// position for each CC.
ImageRegionIteratorWithIndex<BoolImageType>
kernelImageItIndex(tmpSEImage, tmpSEImage->GetRequestedRegion());
// Neighborhood iterator on SE element temp image
NeighborhoodIterator<BoolImageType>
SEoNeighbIt( m_Radius, tmpSEImage, tmpSEImage->GetRequestedRegion());
SEoNeighbIt.OverrideBoundaryCondition(&cbc);
unsigned int neighborhoodSize = SEoNeighbIt.Size();
// Use a FIFO queue in order to perform the burning process
// which allows to identify the connected components of SE
std::queue<IndexType> propagQueue;
// Clear vector of recorded CCs
m_KernelCCVector.clear();
// walk both the "image" of the kernel iterator and the kernel
// iterator. use the "image" iterator to keep track of
// components. use the kernel iterator for quick access of offsets
kernel_it = KernelBegin;
kernelImageItIndex.GoToBegin();
while( !kernelImageItIndex.IsAtEnd() )
{
// If a ON element is found track the CC
if( kernelImageItIndex.Get() )
{
// Mark current element
kernelImageItIndex.Set( false );
// add it to queue
propagQueue.push( kernelImageItIndex.GetIndex() );
// We know also that we start a new CC, so we store the position of this
// element relatively to center of kernel ( i.e a vector ).
OffsetType offset = m_Kernel.GetOffset(kernel_it - KernelBegin);
m_KernelCCVector.push_back( offset );
// Process while FIFO queue is not empty
while ( !propagQueue.empty() )
{
// Extract pixel index from queue
IndexType currentIndex = propagQueue.front();
propagQueue.pop();
// Now look for neighbours that are also ON pixels
SEoNeighbIt.GoToBegin();
SEoNeighbIt.SetLocation( currentIndex );
for (i = 0; i < neighborhoodSize; ++i)
{
// If current neighb pixel is ON, mark it and push it into queue
if( SEoNeighbIt.GetPixel(i) )
{
// Mark it
bool bIsBounds;
SEoNeighbIt.SetPixel(i, false, bIsBounds);
// Push
propagQueue.push( SEoNeighbIt.GetIndex(i) );
}
}
} // while ( !propagQueue.empty() )
} // if( kernelImageItIndex.Get() )
++kernelImageItIndex;
++kernel_it;
}
// Free memory of tmp image
tmpSEImage->Initialize();
// Now look for difference sets
// ----------------------------
// Create a neighbourhood of radius m_Radius This neighbourhood is
// called adj neighbourhood and is used in order to get the offset
// in each direction.
Neighborhood<InputPixelType, InputImageDimension> adjNeigh;
adjNeigh.SetRadius(m_Radius);
// now we look for the difference sets in each directions: If you
// take a structuring element (SE) and you translate it in one of
// the direction of the adjacency ( (-1,0,0), (-1,1,0), etc. ) you
// get SE(dir). Now the difference set is SE(dir) - SE. So when you
// want to paint SE union SE(dir) you just need to paint SE and the
// difference set.
// Allocate difference sets container
m_KernelDifferenceSets.resize( adjNeigh.Size() );
// For each direction of the connectivity, look for difference set
// in this direction
for( i = 0; i < adjNeigh.Size(); ++i )
{
m_KernelDifferenceSets[i].clear();
// For each element of the kernel wich index is k, see if they
// belong to this difference set treat only "ON" elements of SE
std::vector<unsigned int>::const_iterator kernelOnElementsIt;
for( kernelOnElementsIt = kernelOnElements.begin();
kernelOnElementsIt != kernelOnElements.end(); ++kernelOnElementsIt )
{
// Get the index in the SE neighb
k = *kernelOnElementsIt;
// Get the Nd position of current SE element. In order to do
// that, we have not a "GetIndex" function. So first we get the
// offset relatively to the center SE element and add it to the
// index of this center SE element:
OffsetType currentOffset = m_Kernel.GetOffset(k);
IndexType currentShiftedPosition = centerElementPosition + currentOffset;
// Add to current element position the offset corresponding the
// current adj direction
currentShiftedPosition += adjNeigh.GetOffset(i);
// now currentShiftedPosition is the position of the current
// "pixel" ( SE element ) shifted in the direction i. Check if it
// is outside the structuring element. If it is the case, we
// know that the current SE element is in the difference set of
// the current direction i (this works only for boundary pixels!).
bool bIsOutside = false;
for( unsigned int dimCount = 0;
dimCount < TInputImage::ImageDimension; ++dimCount )
{
if( currentShiftedPosition[dimCount] < 0
|| currentShiftedPosition[dimCount] >=
(int)m_Kernel.GetSize(dimCount) )
{
bIsOutside = true;
break;
}
}
if( bIsOutside )
{
// The current SE element, which index is hence k, belongs to
// the difference set in the direction i. Add it to
// difference set in dir i
m_KernelDifferenceSets[i].push_back(currentOffset);
}
else
{
// The current shifted SE element doesn't belong to SE
// boundaries. In order to see if it belongs to difference set
// in direction i, the value of kernel at the position of the
// current SE element SHIFTED in direction i must be OFF ( i.e
// = 0 ) In order to access to shifted value we must compute a
// neighbourhood index
// retrieve the index offset relatively to the current NOT
// shifted SE element
unsigned int currentRelativeIndexOffset
= m_Kernel.GetNeighborhoodIndex( adjNeigh.GetOffset(i) )
- m_Kernel.GetCenterNeighborhoodIndex();
// Now thanks to this relative offset, we can get the absolute
// neigh index of the current shifted SE element.
unsigned int currentShiftedIndex
= k /*NOT shifted position*/ + currentRelativeIndexOffset;
// Test if shifted element is OFF: in fact diff(dir) = all the
// elements of SE + dir where elements of SE is ON and
// elements of SE + dir is OFF.
if( m_Kernel[currentShiftedIndex] <= 0 )
{
// Add it to difference set in dir i
m_KernelDifferenceSets[i].push_back(currentOffset);
}
}
} // for( kernelOnElementsIt = kernelOnElements.begin(); ...
} // for( i = 0; i < adjNeigh.Size(); ++i )
// For the particular case of the m_KernelDifferenceSets at the
// center of the kernel ( the difference set is theoretically empty
// in this case because there is no shift ) we put the kernel set
// itself, useful for the rest of the process.
unsigned int centerKernelIndex = adjNeigh.Size() / 2;
for ( k=0, kernel_it=KernelBegin; kernel_it != KernelEnd; ++kernel_it, ++k)
{
if ((*kernel_it) > 0)
{
OffsetType currentOffset = m_Kernel.GetOffset(k);
m_KernelDifferenceSets[centerKernelIndex].push_back(currentOffset);
}
}
}
/**
* Standard "PrintSelf" method
*/
template <class TInputImage, class TOutput, class TKernel>
void
BinaryMorphologyImageFilter<TInputImage, TOutput, TKernel>
::PrintSelf( std::ostream& os, Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Radius: " << m_Radius << std::endl;
os << indent << "Kernel: " << m_Kernel << std::endl;
os << indent << "Foreground Value: " << static_cast<typename NumericTraits<InputPixelType>::PrintType>(m_ForegroundValue) << std::endl;
os << indent << "Background Value: " << static_cast<typename NumericTraits<OutputPixelType>::PrintType>(m_BackgroundValue) << std::endl;
os << indent << "BoundaryToForeground: " << m_BoundaryToForeground << std::endl;
}
} // end namespace itk
#endif
|