File: itkCannyEdgeDetectionImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (378 lines) | stat: -rw-r--r-- 13,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkCannyEdgeDetectionImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2007-10-16 14:22:34 $
  Version:   $Revision: 1.24 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCannyEdgeDetectionImageFilter_h
#define __itkCannyEdgeDetectionImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkFixedArray.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkMultiThreader.h"
#include "itkDerivativeOperator.h"
#include "itkSparseFieldLayer.h"
#include "itkObjectStore.h"


namespace itk
{


template <class TValueType>
class ListNode
{
public:
  TValueType m_Value;
  ListNode *Next;
  ListNode *Previous;
};


/** \class CannyEdgeDetectionImageFilter
 *
 * This filter is an implementation of a Canny edge detector for scalar-valued
 * images.  Based on John Canny's paper "A Computational Approach to Edge 
 * Detection"(IEEE Transactions on Pattern Analysis and Machine Intelligence, 
 * Vol. PAMI-8, No.6, November 1986),  there are four major steps used in the 
 * edge-detection scheme:
 * (1) Smooth the input image with Gaussian filter.
 * (2) Calculate the second directional derivatives of the smoothed image. 
 * (3) Non-Maximum Suppression: the zero-crossings of 2nd derivative are found,
 *     and the sign of third derivative is used to find the correct extrema. 
 * (4) The hysteresis thresholding is applied to the gradient magnitude
 *      (multiplied with zero-crossings) of the smoothed image to find and 
 *      link edges.
 *
 * \par Inputs and Outputs
 * The input to this filter should be a scalar, real-valued Itk image of
 * arbitrary dimension.  The output should also be a scalar, real-value Itk
 * image of the same dimensionality.
 *
 * \par Parameters
 * There are four parameters for this filter that control the sub-filters used
 * by the algorithm.
 *
 * \par 
 * Variance and Maximum error are used in the Gaussian smoothing of the input
 * image.  See  itkDiscreteGaussianImageFilter for information on these
 * parameters.
 *
 * \par
 * Threshold is the lowest allowed value in the output image.  Its data type is 
 * the same as the data type of the output image. Any values below the
 * Threshold level will be replaced with the OutsideValue parameter value, whose
 * default is zero.
 * 
 * \todo Edge-linking will be added when an itk connected component labeling
 * algorithm is available.
 *
 * \sa DiscreteGaussianImageFilter
 * \sa ZeroCrossingImageFilter
 * \sa ThresholdImageFilter */
template<class TInputImage, class TOutputImage>
class ITK_EXPORT CannyEdgeDetectionImageFilter
  : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  /** Standard "Self" & Superclass typedef.  */
  typedef CannyEdgeDetectionImageFilter    Self;
  typedef ImageToImageFilter<TInputImage, TOutputImage> Superclass;
   
  /** Image typedef support   */
  typedef TInputImage  InputImageType;
  typedef TOutputImage OutputImageType;
      
  /** SmartPointer typedef support  */    
  typedef SmartPointer<Self>  Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Define pixel types. */
  typedef typename TInputImage::PixelType  InputImagePixelType;
  typedef typename TOutputImage::PixelType  OutputImagePixelType;
  typedef typename TInputImage::IndexType   IndexType;

  /** The default boundary condition is used unless overridden 
   *in the Evaluate() method. */
  typedef ZeroFluxNeumannBoundaryCondition<OutputImageType>
  DefaultBoundaryConditionType;

  /** The type of data structure that is passed to this function object
   * to evaluate at a pixel that does not lie on a data set boundary.
   */
  typedef ConstNeighborhoodIterator<OutputImageType,
                                    DefaultBoundaryConditionType> NeighborhoodType;

  typedef ListNode<IndexType> ListNodeType;
  typedef ObjectStore<ListNodeType> ListNodeStorageType;
  typedef SparseFieldLayer<ListNodeType> ListType;
  typedef typename ListType::Pointer ListPointerType;

  /** Method for creation through the object factory.  */
  itkNewMacro(Self);  
    
  /** Typedef to describe the output image region type.*/
  typedef typename TOutputImage::RegionType OutputImageRegionType;
    
  /** Run-time type information (and related methods). */
  itkTypeMacro(CannyEdgeDetectionImageFilter, ImageToImageFilter);
  
  /** ImageDimension constant    */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);
  itkStaticConstMacro(OutputImageDimension, unsigned int,
                      TOutputImage::ImageDimension);
  
  /** Typedef of double containers */
  typedef FixedArray<double, itkGetStaticConstMacro(ImageDimension)> ArrayType;

  /** Standard get/set macros for filter parameters. */
  itkSetMacro(Variance, ArrayType);
  itkGetMacro(Variance, const ArrayType);
  itkSetMacro(MaximumError, ArrayType);
  itkGetMacro(MaximumError, const ArrayType);
  
  /** Set/Get the Variance parameter used by the Gaussian smoothing
      filter in this algorithm */
  void SetVariance(const typename ArrayType::ValueType v)
  {
    for (unsigned int i=0; i < TInputImage::ImageDimension; i++)
      {
      if (m_Variance[i] != v)
        {
        m_Variance.Fill(v);
        this->Modified();
        break;
        }
      }
  }
  
  /** Set/Get the MaximumError paramter used by the Gaussian smoothing filter
      in this algorithm */
  void SetMaximumError(const typename ArrayType::ValueType v)
  {
    for (unsigned int i=0; i < TInputImage::ImageDimension; i++)
      {
      if (m_Variance[i] != v)
        {
        m_MaximumError.Fill(v);
        this->Modified();
        break;
        }
      }
  }
  
  /* Set the Threshold value for detected edges. */
  void SetThreshold(const OutputImagePixelType th)
  {
    this->m_Threshold = th;
    this->m_UpperThreshold = m_Threshold;
    this->m_LowerThreshold = m_Threshold/2.0;
    itkLegacyReplaceBodyMacro(SetThreshold, 2.2, SetUpperThreshold);
  }
  
  OutputImagePixelType GetThreshold(OutputImagePixelType th) 
  {
    itkLegacyReplaceBodyMacro(GetThreshold, 2.2, GetUpperThreshold);
    return this->m_Threshold; 
  }

  ///* Set the Threshold value for detected edges. */
  itkSetMacro(UpperThreshold, OutputImagePixelType );
  itkGetMacro(UpperThreshold, OutputImagePixelType);

  itkSetMacro(LowerThreshold, OutputImagePixelType );
  itkGetMacro(LowerThreshold, OutputImagePixelType);

  /* Set the Thresholdvalue for detected edges. */
  itkSetMacro(OutsideValue, OutputImagePixelType);
  itkGetMacro(OutsideValue, OutputImagePixelType);
  
  OutputImageType * GetNonMaximumSuppressionImage()
    {
      return this->m_MultiplyImageFilter->GetOutput();
    }

  /** CannyEdgeDetectionImageFilter needs a larger input requested
   * region than the output requested region ( derivative operators, etc).  
   * As such, CannyEdgeDetectionImageFilter needs to provide an implementation
   * for GenerateInputRequestedRegion() in order to inform the 
   * pipeline execution model.
   *
   * \sa ImageToImageFilter::GenerateInputRequestedRegion()  */  
  virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(InputHasNumericTraitsCheck,
    (Concept::HasNumericTraits<InputImagePixelType>));
  itkConceptMacro(OutputHasNumericTraitsCheck,
    (Concept::HasNumericTraits<OutputImagePixelType>));
  itkConceptMacro(SameDimensionCheck,
    (Concept::SameDimension<ImageDimension, OutputImageDimension>));
  itkConceptMacro(InputIsFloatingPointCheck,
    (Concept::IsFloatingPoint<InputImagePixelType>));
  itkConceptMacro(OutputIsFloatingPointCheck,
    (Concept::IsFloatingPoint<OutputImagePixelType>));
  /** End concept checking */
#endif

protected:
  CannyEdgeDetectionImageFilter();
  CannyEdgeDetectionImageFilter(const Self&) {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  void GenerateData();

  typedef DiscreteGaussianImageFilter<InputImageType, OutputImageType>
                                                      GaussianImageFilterType;
  typedef MultiplyImageFilter< OutputImageType, 
              OutputImageType, OutputImageType>       MultiplyImageFilterType;

private:
  virtual ~CannyEdgeDetectionImageFilter(){};

  /** Thread-Data Structure   */
  struct CannyThreadStruct
  {
    CannyEdgeDetectionImageFilter *Filter;
  };

  /** This allocate storage for m_UpdateBuffer, m_UpdateBuffer1 */
  void AllocateUpdateBuffer();

  /** Implement hysteresis thresholding */
  void HysteresisThresholding();

  /** Edge linking funciton */
  void FollowEdge(IndexType index);

  /** Check if the index is in bounds or not */
  bool InBounds(IndexType index);
  

  /** Calculate the second derivative of the smoothed image, it writes the 
   *  result to m_UpdateBuffer using the ThreadedCompute2ndDerivative() method
   *  and multithreading mechanism.   */
  void Compute2ndDerivative();

  /**
   * Split the input into "num" pieces, returning region "i" as
   * "splitRegion". This method is called "num" times to return non-overlapping
   * regions. The method returns the number of pieces that the input
   * can be split into by the routine. i.e. return value is less than or equal
   * to "num".
   * \sa ImageSource
   */
  //  virtual
  //  int SplitUpdateContainer(int i, int num, ThreadRegionType& splitRegion);

  /** Does the actual work of calculating of the 2nd derivative over a region 
   *  supplied by the multithreading mechanism.  
   *
   *  \sa Compute2ndDerivative
   *  \sa Compute2ndDerivativeThreaderCallBack   */ 
  void ThreadedCompute2ndDerivative(const OutputImageRegionType&
                                    outputRegionForThread, int threadId);

  /** This callback method uses ImageSource::SplitRequestedRegion to acquire an 
   * output region that it passes to ThreadedCompute2ndDerivative for
   * processing.  */
  static ITK_THREAD_RETURN_TYPE
  Compute2ndDerivativeThreaderCallback( void * arg );

  /** This methos is used to calculate the 2nd derivative for 
   * non-boundary pixels. It is called by the ThreadedCompute2ndDerivative 
   * method. */  
  OutputImagePixelType ComputeCannyEdge(const NeighborhoodType &it,
                                        void *globalData );

  /** Calculate the gradient of the second derivative of the smoothed image, 
   *  it writes the result to m_UpdateBuffer1 using the 
   *  ThreadedCompute2ndDerivativePos() method and multithreading mechanism.
   */
  void Compute2ndDerivativePos();

  /** Does the actual work of calculating of the 2nd derivative over a region 
   *  supplied by the multithreading mechanism.  
   *
   *  \sa Compute2ndDerivativePos
   *  \sa Compute3ndDerivativePosThreaderCallBack   */ 
  void ThreadedCompute2ndDerivativePos(const OutputImageRegionType&
                                       outputRegionForThread, int threadId);

  /**This callback method uses ImageSource::SplitRequestedRegion to acquire an
   * output region that it passes to ThreadedCompute2ndDerivative for
   * processing.   */
  static ITK_THREAD_RETURN_TYPE
  Compute2ndDerivativePosThreaderCallback( void *arg );

  /** The variance of the Gaussian Filter used in this filter */
  ArrayType m_Variance;

  /** The maximum error of the gaussian blurring kernel in each dimensional
   * direction.  */
  ArrayType m_MaximumError;

  /** Upper threshold value for identifying edges. */
  OutputImagePixelType m_UpperThreshold;  //should be float here?
  
  /** Lower threshold value for identifying edges. */
  OutputImagePixelType m_LowerThreshold; //should be float here?

  /** Threshold value for identifying edges. */
  OutputImagePixelType m_Threshold;

  /** "Background" value for use in thresholding. */
  OutputImagePixelType m_OutsideValue;

  /** Update buffers used during calculation of multiple steps */
  typename OutputImageType::Pointer  m_UpdateBuffer1;

  /** Gaussian filter to smooth the input image  */
  typename GaussianImageFilterType::Pointer m_GaussianFilter;
  
  /** Multiply image filter to multiply with the zero crossings of the second
   *  derivative.  */
  typename MultiplyImageFilterType::Pointer m_MultiplyImageFilter;
  
  /** Function objects that are used in the inner loops of derivatiVex
      calculations. */
  DerivativeOperator<OutputImagePixelType,itkGetStaticConstMacro(ImageDimension)>
  m_ComputeCannyEdge1stDerivativeOper;
  DerivativeOperator<OutputImagePixelType,itkGetStaticConstMacro(ImageDimension)>
  m_ComputeCannyEdge2ndDerivativeOper;

  std::slice  m_ComputeCannyEdgeSlice[ImageDimension];

  unsigned long m_Stride[ImageDimension];
  unsigned long m_Center;

  typename ListNodeStorageType::Pointer m_NodeStore;
  ListPointerType m_NodeList;

};

} //end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCannyEdgeDetectionImageFilter.txx"
#endif
  
#endif