1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCannyEdgeDetectionImageFilter.h,v $
Language: C++
Date: $Date: 2007-10-16 14:22:34 $
Version: $Revision: 1.24 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCannyEdgeDetectionImageFilter_h
#define __itkCannyEdgeDetectionImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkFixedArray.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkMultiThreader.h"
#include "itkDerivativeOperator.h"
#include "itkSparseFieldLayer.h"
#include "itkObjectStore.h"
namespace itk
{
template <class TValueType>
class ListNode
{
public:
TValueType m_Value;
ListNode *Next;
ListNode *Previous;
};
/** \class CannyEdgeDetectionImageFilter
*
* This filter is an implementation of a Canny edge detector for scalar-valued
* images. Based on John Canny's paper "A Computational Approach to Edge
* Detection"(IEEE Transactions on Pattern Analysis and Machine Intelligence,
* Vol. PAMI-8, No.6, November 1986), there are four major steps used in the
* edge-detection scheme:
* (1) Smooth the input image with Gaussian filter.
* (2) Calculate the second directional derivatives of the smoothed image.
* (3) Non-Maximum Suppression: the zero-crossings of 2nd derivative are found,
* and the sign of third derivative is used to find the correct extrema.
* (4) The hysteresis thresholding is applied to the gradient magnitude
* (multiplied with zero-crossings) of the smoothed image to find and
* link edges.
*
* \par Inputs and Outputs
* The input to this filter should be a scalar, real-valued Itk image of
* arbitrary dimension. The output should also be a scalar, real-value Itk
* image of the same dimensionality.
*
* \par Parameters
* There are four parameters for this filter that control the sub-filters used
* by the algorithm.
*
* \par
* Variance and Maximum error are used in the Gaussian smoothing of the input
* image. See itkDiscreteGaussianImageFilter for information on these
* parameters.
*
* \par
* Threshold is the lowest allowed value in the output image. Its data type is
* the same as the data type of the output image. Any values below the
* Threshold level will be replaced with the OutsideValue parameter value, whose
* default is zero.
*
* \todo Edge-linking will be added when an itk connected component labeling
* algorithm is available.
*
* \sa DiscreteGaussianImageFilter
* \sa ZeroCrossingImageFilter
* \sa ThresholdImageFilter */
template<class TInputImage, class TOutputImage>
class ITK_EXPORT CannyEdgeDetectionImageFilter
: public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard "Self" & Superclass typedef. */
typedef CannyEdgeDetectionImageFilter Self;
typedef ImageToImageFilter<TInputImage, TOutputImage> Superclass;
/** Image typedef support */
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
/** SmartPointer typedef support */
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Define pixel types. */
typedef typename TInputImage::PixelType InputImagePixelType;
typedef typename TOutputImage::PixelType OutputImagePixelType;
typedef typename TInputImage::IndexType IndexType;
/** The default boundary condition is used unless overridden
*in the Evaluate() method. */
typedef ZeroFluxNeumannBoundaryCondition<OutputImageType>
DefaultBoundaryConditionType;
/** The type of data structure that is passed to this function object
* to evaluate at a pixel that does not lie on a data set boundary.
*/
typedef ConstNeighborhoodIterator<OutputImageType,
DefaultBoundaryConditionType> NeighborhoodType;
typedef ListNode<IndexType> ListNodeType;
typedef ObjectStore<ListNodeType> ListNodeStorageType;
typedef SparseFieldLayer<ListNodeType> ListType;
typedef typename ListType::Pointer ListPointerType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Typedef to describe the output image region type.*/
typedef typename TOutputImage::RegionType OutputImageRegionType;
/** Run-time type information (and related methods). */
itkTypeMacro(CannyEdgeDetectionImageFilter, ImageToImageFilter);
/** ImageDimension constant */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
itkStaticConstMacro(OutputImageDimension, unsigned int,
TOutputImage::ImageDimension);
/** Typedef of double containers */
typedef FixedArray<double, itkGetStaticConstMacro(ImageDimension)> ArrayType;
/** Standard get/set macros for filter parameters. */
itkSetMacro(Variance, ArrayType);
itkGetMacro(Variance, const ArrayType);
itkSetMacro(MaximumError, ArrayType);
itkGetMacro(MaximumError, const ArrayType);
/** Set/Get the Variance parameter used by the Gaussian smoothing
filter in this algorithm */
void SetVariance(const typename ArrayType::ValueType v)
{
for (unsigned int i=0; i < TInputImage::ImageDimension; i++)
{
if (m_Variance[i] != v)
{
m_Variance.Fill(v);
this->Modified();
break;
}
}
}
/** Set/Get the MaximumError paramter used by the Gaussian smoothing filter
in this algorithm */
void SetMaximumError(const typename ArrayType::ValueType v)
{
for (unsigned int i=0; i < TInputImage::ImageDimension; i++)
{
if (m_Variance[i] != v)
{
m_MaximumError.Fill(v);
this->Modified();
break;
}
}
}
/* Set the Threshold value for detected edges. */
void SetThreshold(const OutputImagePixelType th)
{
this->m_Threshold = th;
this->m_UpperThreshold = m_Threshold;
this->m_LowerThreshold = m_Threshold/2.0;
itkLegacyReplaceBodyMacro(SetThreshold, 2.2, SetUpperThreshold);
}
OutputImagePixelType GetThreshold(OutputImagePixelType th)
{
itkLegacyReplaceBodyMacro(GetThreshold, 2.2, GetUpperThreshold);
return this->m_Threshold;
}
///* Set the Threshold value for detected edges. */
itkSetMacro(UpperThreshold, OutputImagePixelType );
itkGetMacro(UpperThreshold, OutputImagePixelType);
itkSetMacro(LowerThreshold, OutputImagePixelType );
itkGetMacro(LowerThreshold, OutputImagePixelType);
/* Set the Thresholdvalue for detected edges. */
itkSetMacro(OutsideValue, OutputImagePixelType);
itkGetMacro(OutsideValue, OutputImagePixelType);
OutputImageType * GetNonMaximumSuppressionImage()
{
return this->m_MultiplyImageFilter->GetOutput();
}
/** CannyEdgeDetectionImageFilter needs a larger input requested
* region than the output requested region ( derivative operators, etc).
* As such, CannyEdgeDetectionImageFilter needs to provide an implementation
* for GenerateInputRequestedRegion() in order to inform the
* pipeline execution model.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputHasNumericTraitsCheck,
(Concept::HasNumericTraits<InputImagePixelType>));
itkConceptMacro(OutputHasNumericTraitsCheck,
(Concept::HasNumericTraits<OutputImagePixelType>));
itkConceptMacro(SameDimensionCheck,
(Concept::SameDimension<ImageDimension, OutputImageDimension>));
itkConceptMacro(InputIsFloatingPointCheck,
(Concept::IsFloatingPoint<InputImagePixelType>));
itkConceptMacro(OutputIsFloatingPointCheck,
(Concept::IsFloatingPoint<OutputImagePixelType>));
/** End concept checking */
#endif
protected:
CannyEdgeDetectionImageFilter();
CannyEdgeDetectionImageFilter(const Self&) {}
void PrintSelf(std::ostream& os, Indent indent) const;
void GenerateData();
typedef DiscreteGaussianImageFilter<InputImageType, OutputImageType>
GaussianImageFilterType;
typedef MultiplyImageFilter< OutputImageType,
OutputImageType, OutputImageType> MultiplyImageFilterType;
private:
virtual ~CannyEdgeDetectionImageFilter(){};
/** Thread-Data Structure */
struct CannyThreadStruct
{
CannyEdgeDetectionImageFilter *Filter;
};
/** This allocate storage for m_UpdateBuffer, m_UpdateBuffer1 */
void AllocateUpdateBuffer();
/** Implement hysteresis thresholding */
void HysteresisThresholding();
/** Edge linking funciton */
void FollowEdge(IndexType index);
/** Check if the index is in bounds or not */
bool InBounds(IndexType index);
/** Calculate the second derivative of the smoothed image, it writes the
* result to m_UpdateBuffer using the ThreadedCompute2ndDerivative() method
* and multithreading mechanism. */
void Compute2ndDerivative();
/**
* Split the input into "num" pieces, returning region "i" as
* "splitRegion". This method is called "num" times to return non-overlapping
* regions. The method returns the number of pieces that the input
* can be split into by the routine. i.e. return value is less than or equal
* to "num".
* \sa ImageSource
*/
// virtual
// int SplitUpdateContainer(int i, int num, ThreadRegionType& splitRegion);
/** Does the actual work of calculating of the 2nd derivative over a region
* supplied by the multithreading mechanism.
*
* \sa Compute2ndDerivative
* \sa Compute2ndDerivativeThreaderCallBack */
void ThreadedCompute2ndDerivative(const OutputImageRegionType&
outputRegionForThread, int threadId);
/** This callback method uses ImageSource::SplitRequestedRegion to acquire an
* output region that it passes to ThreadedCompute2ndDerivative for
* processing. */
static ITK_THREAD_RETURN_TYPE
Compute2ndDerivativeThreaderCallback( void * arg );
/** This methos is used to calculate the 2nd derivative for
* non-boundary pixels. It is called by the ThreadedCompute2ndDerivative
* method. */
OutputImagePixelType ComputeCannyEdge(const NeighborhoodType &it,
void *globalData );
/** Calculate the gradient of the second derivative of the smoothed image,
* it writes the result to m_UpdateBuffer1 using the
* ThreadedCompute2ndDerivativePos() method and multithreading mechanism.
*/
void Compute2ndDerivativePos();
/** Does the actual work of calculating of the 2nd derivative over a region
* supplied by the multithreading mechanism.
*
* \sa Compute2ndDerivativePos
* \sa Compute3ndDerivativePosThreaderCallBack */
void ThreadedCompute2ndDerivativePos(const OutputImageRegionType&
outputRegionForThread, int threadId);
/**This callback method uses ImageSource::SplitRequestedRegion to acquire an
* output region that it passes to ThreadedCompute2ndDerivative for
* processing. */
static ITK_THREAD_RETURN_TYPE
Compute2ndDerivativePosThreaderCallback( void *arg );
/** The variance of the Gaussian Filter used in this filter */
ArrayType m_Variance;
/** The maximum error of the gaussian blurring kernel in each dimensional
* direction. */
ArrayType m_MaximumError;
/** Upper threshold value for identifying edges. */
OutputImagePixelType m_UpperThreshold; //should be float here?
/** Lower threshold value for identifying edges. */
OutputImagePixelType m_LowerThreshold; //should be float here?
/** Threshold value for identifying edges. */
OutputImagePixelType m_Threshold;
/** "Background" value for use in thresholding. */
OutputImagePixelType m_OutsideValue;
/** Update buffers used during calculation of multiple steps */
typename OutputImageType::Pointer m_UpdateBuffer1;
/** Gaussian filter to smooth the input image */
typename GaussianImageFilterType::Pointer m_GaussianFilter;
/** Multiply image filter to multiply with the zero crossings of the second
* derivative. */
typename MultiplyImageFilterType::Pointer m_MultiplyImageFilter;
/** Function objects that are used in the inner loops of derivatiVex
calculations. */
DerivativeOperator<OutputImagePixelType,itkGetStaticConstMacro(ImageDimension)>
m_ComputeCannyEdge1stDerivativeOper;
DerivativeOperator<OutputImagePixelType,itkGetStaticConstMacro(ImageDimension)>
m_ComputeCannyEdge2ndDerivativeOper;
std::slice m_ComputeCannyEdgeSlice[ImageDimension];
unsigned long m_Stride[ImageDimension];
unsigned long m_Center;
typename ListNodeStorageType::Pointer m_NodeStore;
ListPointerType m_NodeList;
};
} //end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCannyEdgeDetectionImageFilter.txx"
#endif
#endif
|