1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCannyEdgeDetectionImageFilter.txx,v $
Language: C++
Date: $Date: 2005-11-16 19:31:39 $
Version: $Revision: 1.52 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkCannyEdgeDetectionImageFilter_txx
#define _itkCannyEdgeDetectionImageFilter_txx
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkZeroCrossingImageFilter.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkGradientMagnitudeImageFilter.h"
namespace itk
{
template <class TInputImage, class TOutputImage>
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::
CannyEdgeDetectionImageFilter()
{
unsigned int i;
m_Variance.Fill(0.0);
m_MaximumError.Fill(0.01);
m_OutsideValue = NumericTraits<OutputImagePixelType>::Zero;
m_Threshold = NumericTraits<OutputImagePixelType>::Zero;
m_UpperThreshold = NumericTraits<OutputImagePixelType>::Zero;
m_LowerThreshold = NumericTraits<OutputImagePixelType>::Zero;
m_GaussianFilter = GaussianImageFilterType::New();
m_MultiplyImageFilter = MultiplyImageFilterType::New();
m_UpdateBuffer1 = OutputImageType::New();
// Set up neighborhood slices for all the dimensions.
typename Neighborhood<OutputImagePixelType, ImageDimension>::RadiusType r;
r.Fill(1);
// Dummy neighborhood used to set up the slices.
Neighborhood<OutputImagePixelType, ImageDimension> it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for (i = 0; i< ImageDimension; ++i)
{
m_Stride[i] = it.GetStride(i);
}
for (i = 0; i< ImageDimension; ++i)
{
m_ComputeCannyEdgeSlice[i]
= std::slice( m_Center - m_Stride[i], 3, m_Stride[i]);
}
// Allocate the derivative operator.
m_ComputeCannyEdge1stDerivativeOper.SetDirection(0);
m_ComputeCannyEdge1stDerivativeOper.SetOrder(1);
m_ComputeCannyEdge1stDerivativeOper.CreateDirectional();
m_ComputeCannyEdge2ndDerivativeOper.SetDirection(0);
m_ComputeCannyEdge2ndDerivativeOper.SetOrder(2);
m_ComputeCannyEdge2ndDerivativeOper.CreateDirectional();
//Initialize the list
m_NodeStore = ListNodeStorageType::New();
m_NodeList = ListType::New();
}
template <class TInputImage, class TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>
::AllocateUpdateBuffer()
{
// The update buffer looks just like the input.
typename TInputImage::ConstPointer input = this->GetInput();
m_UpdateBuffer1->CopyInformation( input );
m_UpdateBuffer1->SetRequestedRegion(input->GetRequestedRegion());
m_UpdateBuffer1->SetBufferedRegion(input->GetBufferedRegion());
m_UpdateBuffer1->Allocate();
}
template <class TInputImage, class TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
return;
// get pointers to the input and output
typename Superclass::InputImagePointer inputPtr =
const_cast< TInputImage * >( this->GetInput());
typename Superclass::OutputImagePointer outputPtr = this->GetOutput();
if ( !inputPtr || !outputPtr )
{
return;
}
//Set the kernel size.
unsigned long radius = 1;
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( radius );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
{
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion( inputRequestedRegion );
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
OStringStream msg;
msg << this->GetNameOfClass()
<< "::GenerateInputRequestedRegion()";
e.SetLocation(msg.str().c_str());
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::ThreadedCompute2ndDerivative(const OutputImageRegionType&
outputRegionForThread, int threadId)
{
ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;
ImageRegionIterator<TOutputImage> it;
void *globalData = 0;
// Here input is the result from the gaussian filter
// output is the update buffer.
typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();
typename OutputImageType::Pointer output = this->GetOutput();
// set iterator radius
Size<ImageDimension> radius; radius.Fill(1);
// Find the data-set boundary "faces"
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::
FaceListType faceList;
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage> bC;
faceList = bC(input, outputRegionForThread, radius);
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::
FaceListType::iterator fit;
// support progress methods/callbacks
ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels(), 100, 0.0f, 0.5f );
// Process the non-boundady region and then each of the boundary faces.
// These are N-d regions which border the edge of the buffer.
for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
NeighborhoodType bit(radius, input, *fit);
it = ImageRegionIterator<OutputImageType>(output, *fit);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
while ( ! bit.IsAtEnd() )
{
it.Value() = ComputeCannyEdge(bit, globalData);
++bit;
++it;
progress.CompletedPixel();
}
}
}
template< class TInputImage, class TOutputImage >
typename CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::OutputImagePixelType
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::ComputeCannyEdge(const NeighborhoodType &it,
void * itkNotUsed(globalData) )
{
unsigned int i, j;
NeighborhoodInnerProduct<OutputImageType> innerProduct;
OutputImagePixelType dx[ImageDimension];
OutputImagePixelType dxx[ImageDimension];
OutputImagePixelType dxy[ImageDimension*(ImageDimension-1)/2];
OutputImagePixelType deriv;
OutputImagePixelType gradMag;
// double alpha = 0.01;
//Calculate 1st & 2nd order derivative
for(i = 0; i < ImageDimension; i++)
{
dx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it,
m_ComputeCannyEdge1stDerivativeOper);
dxx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it,
m_ComputeCannyEdge2ndDerivativeOper);
}
deriv = NumericTraits<OutputImagePixelType>::Zero;
int k = 0;
//Calculate the 2nd derivative
for(i = 0; i < ImageDimension-1; i++)
{
for(j = i+1; j < ImageDimension ; j++)
{
dxy[k] = 0.25 * it.GetPixel(m_Center - m_Stride[i] - m_Stride[j])
- 0.25 * it.GetPixel(m_Center - m_Stride[i]+ m_Stride[j])
-0.25 * it.GetPixel(m_Center + m_Stride[i] - m_Stride[j])
+0.25 * it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]);
deriv += 2.0 * dx[i]*dx[j]*dxy[k];
k++;
}
}
gradMag = 0.0001; // alpha * alpha;
for (i = 0; i < ImageDimension; i++)
{
deriv += dx[i] * dx[i] * dxx[i];
gradMag += dx[i] * dx[i];
}
deriv = deriv/gradMag;
return deriv;
}
// Calculate the second derivative
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::Compute2ndDerivative()
{
CannyThreadStruct str;
str.Filter = this;
this->GetMultiThreader()->SetNumberOfThreads(this->GetNumberOfThreads());
this->GetMultiThreader()->SetSingleMethod(this->Compute2ndDerivativeThreaderCallback, &str);
this->GetMultiThreader()->SingleMethodExecute();
}
template<class TInputImage, class TOutputImage>
ITK_THREAD_RETURN_TYPE
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>
::Compute2ndDerivativeThreaderCallback( void * arg )
{
CannyThreadStruct *str;
int total, threadId, threadCount;
threadId = ((MultiThreader::ThreadInfoStruct *)(arg))->ThreadID;
threadCount = ((MultiThreader::ThreadInfoStruct *)(arg))->NumberOfThreads;
str = (CannyThreadStruct *)(((MultiThreader::ThreadInfoStruct *)(arg))->UserData);
// Execute the actual method with appropriate output region
// first find out how many pieces extent can be split into.
// Using the SplitRequestedRegion method from itk::ImageSource.
OutputImageRegionType splitRegion;
total = str->Filter->SplitRequestedRegion(threadId, threadCount,
splitRegion);
if (threadId < total)
{
str->Filter->ThreadedCompute2ndDerivative(splitRegion, threadId);
}
return ITK_THREAD_RETURN_VALUE;
}
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
// Allocate the output
this->GetOutput()->SetBufferedRegion( this->GetOutput()->GetRequestedRegion() );
this->GetOutput()->Allocate();
typename InputImageType::ConstPointer input = this->GetInput();
typename ZeroCrossingImageFilter<TOutputImage, TOutputImage>::Pointer
zeroCrossFilter = ZeroCrossingImageFilter<TOutputImage, TOutputImage>::New();
typename GradientMagnitudeImageFilter<TOutputImage, TOutputImage>::Pointer
gradMag = GradientMagnitudeImageFilter<TOutputImage, TOutputImage>::New();
typename MultiplyImageFilter<TOutputImage, TOutputImage,TOutputImage>::Pointer multFilter
= MultiplyImageFilter<TOutputImage, TOutputImage,TOutputImage>::New();
this->AllocateUpdateBuffer();
// 1.Apply the Gaussian Filter to the input image.-------
m_GaussianFilter->SetVariance(m_Variance);
m_GaussianFilter->SetMaximumError(m_MaximumError);
m_GaussianFilter->SetInput(input);
m_GaussianFilter->Update();
//2. Calculate 2nd order directional derivative-------
// Calculate the 2nd order directional derivative of the smoothed image.
// The output of this filter will be used to store the directional
// derivative.
this->Compute2ndDerivative();
this->Compute2ndDerivativePos();
// 3. Non-maximum suppression----------
// Calculate the zero crossings of the 2nd directional derivative and write
// the result to output buffer.
zeroCrossFilter->SetInput(this->GetOutput());
zeroCrossFilter->Update();
// 4. Hysteresis Thresholding---------
// First get all the edges corresponding to zerocrossings
m_MultiplyImageFilter->SetInput1(m_UpdateBuffer1);
m_MultiplyImageFilter->SetInput2(zeroCrossFilter->GetOutput());
// To save memory, we will graft the output of the m_GaussianFilter,
// which is no longer needed, into the m_MultiplyImageFilter.
m_MultiplyImageFilter->GraftOutput( m_GaussianFilter->GetOutput() );
m_MultiplyImageFilter->Update();
//Then do the double threshoulding upon the edge reponses
this->HysteresisThresholding();
}
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::HysteresisThresholding()
{
// This is the Zero crossings of the Second derivative multiplied with the
// gradients of the image. HysteresisThresholding of this image should give
// the Canny output.
typename OutputImageType::Pointer input = m_MultiplyImageFilter->GetOutput();
float value;
ListNodeType *node;
ImageRegionIterator<TOutputImage> oit( input, input->GetRequestedRegion() );
oit.GoToBegin();
ImageRegionIterator<TOutputImage> uit(this->GetOutput(),
this->GetOutput()->GetRequestedRegion());
uit.GoToBegin();
while(!uit.IsAtEnd())
{
uit.Value() = 0;
++uit;
}
while(!oit.IsAtEnd())
{
value = oit.Value();
if(value > m_UpperThreshold)
{
node = m_NodeStore->Borrow();
node->m_Value = oit.GetIndex();
m_NodeList->PushFront(node);
FollowEdge(oit.GetIndex());
}
++oit;
}
}
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::FollowEdge(IndexType index)
{
// This is the Zero crossings of the Second derivative multiplied with the
// gradients of the image. HysteresisThresholding of this image should give
// the Canny output.
typename OutputImageType::Pointer input = m_MultiplyImageFilter->GetOutput();
IndexType nIndex;
IndexType cIndex;
ListNodeType * node;
//assign iterator radius
Size<ImageDimension> radius; radius.Fill(1);
ConstNeighborhoodIterator<TOutputImage> oit(radius,
input, input->GetRequestedRegion());
ImageRegionIteratorWithIndex<TOutputImage> uit( this->GetOutput(),
this->GetOutput()->GetRequestedRegion());
uit.SetIndex(index);
if(uit.Get() == 1)
{
return;
}
int nSize = m_Center * 2 +1;
while(!m_NodeList->Empty())
{
// Pop the front node from the list and read its index value.
node = m_NodeList->Front(); // get a pointer to the first node
cIndex = node->m_Value; // read the value of the first node
m_NodeList->PopFront(); // unlink the front node
m_NodeStore->Return(node); // return the memory for reuse
// Move iterators to the correct index position.
oit.SetLocation(cIndex);
uit.SetIndex(cIndex);
uit.Value() = 1;
// Search the neighbors for new indicies to add to the list.
for(int i = 0; i < nSize; i++)
{
nIndex = oit.GetIndex(i);
uit.SetIndex(nIndex);
if(InBounds(nIndex))
{
if(oit.GetPixel(i) > m_LowerThreshold && uit.Value() != 1 )
{
node = m_NodeStore->Borrow(); // get a new node struct
node->m_Value = nIndex; // set its value
m_NodeList->PushFront(node); // add the new node to the list
uit.SetIndex(nIndex);
uit.Value() = 1;
}
}
}
}
}
/*
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::FollowEdge(IndexType index)
{
typename OutputImageType::Pointer output = this->GetOutput();
float value;
IndexType nIndex;
//assign iterator radius
Size<ImageDimension> radius; radius.Fill(1);
ConstNeighborhoodIterator<TOutputImage> oit(radius, output, output->GetRequestedRegion());
ImageRegionIteratorWithIndex<TOutputImage> uit(m_UpdateBuffer,
m_UpdateBuffer->GetRequestedRegion());
uit.SetIndex(index);
if(uit.Get() ==1) return;
uit.Value() = 1;
int nSize = m_Center * 2 +1;
oit.SetLocation(index);
for(int i = 0; i < nSize; i++)
{
nIndex = oit.GetIndex(i);
uit.SetIndex(nIndex);
if(InBounds(nIndex))
if(oit.GetPixel(i) > m_LowerThreshold && uit.Value() != 1 )
{
uit.Value() = 1;
oit.SetLocation(nIndex);
i = -1;
}
}
}
*/
template< class TInputImage, class TOutputImage >
bool
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::InBounds(IndexType index)
{
typename InputImageType::ConstPointer input = this->GetInput();
typename InputImageType::SizeType sz;
sz = (input->GetRequestedRegion()).GetSize();
for(unsigned int i = 0; i < ImageDimension; i++)
{
if(index[i] < 0 ||
index[i] >= static_cast<typename IndexType::IndexValueType>(sz[i]))
{
return false;
}
}
return true;
}
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::ThreadedCompute2ndDerivativePos(const OutputImageRegionType& outputRegionForThread, int threadId)
{
ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;
ConstNeighborhoodIterator<TInputImage> bit;
ConstNeighborhoodIterator<TInputImage> bit1;
ImageRegionIterator<TOutputImage> it;
// Here input is the result from the gaussian filter
// input1 is the 2nd derivative result
// output is the gradient of 2nd derivative
typename OutputImageType::Pointer input1 = this->GetOutput();
typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();
typename InputImageType::Pointer output = m_UpdateBuffer1;
// set iterator radius
Size<ImageDimension> radius; radius.Fill(1);
// Find the data-set boundary "faces"
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::
FaceListType faceList;
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage> bC;
faceList = bC(input, outputRegionForThread, radius);
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::
FaceListType::iterator fit;
// support progress methods/callbacks
ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels(), 100, 0.5f, 0.5f);
InputImagePixelType zero = NumericTraits<InputImagePixelType>::Zero;
OutputImagePixelType dx[ImageDimension];
OutputImagePixelType dx1[ImageDimension];
OutputImagePixelType directional[ImageDimension];
OutputImagePixelType derivPos;
OutputImagePixelType gradMag;
// Process the non-boundary region and then each of the boundary faces.
// These are N-d regions which border the edge of the buffer.
NeighborhoodInnerProduct<OutputImageType> IP;
for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
bit = ConstNeighborhoodIterator<InputImageType>(radius,
input, *fit);
bit1 =ConstNeighborhoodIterator<InputImageType>(radius,
input1, *fit);
it = ImageRegionIterator<OutputImageType>(output, *fit);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
bit1.GoToBegin();
it.GoToBegin();
while ( ! bit.IsAtEnd() )
{
gradMag = 0.0001;
for ( unsigned int i = 0; i < ImageDimension; i++)
{
dx[i] = IP(m_ComputeCannyEdgeSlice[i], bit,
m_ComputeCannyEdge1stDerivativeOper);
gradMag += dx[i] * dx[i];
dx1[i] = IP(m_ComputeCannyEdgeSlice[i], bit1,
m_ComputeCannyEdge1stDerivativeOper);
}
gradMag = vcl_sqrt((double)gradMag);
derivPos = zero;
for ( unsigned int i = 0; i < ImageDimension; i++)
{
//First calculate the directional derivative
directional[i] = dx[i]/gradMag;
//calculate gradient of 2nd derivative
derivPos += dx1[i] * directional[i];
}
it.Value() = ((derivPos <= zero)) ;
it.Value() = it.Get() * gradMag;
++bit;
++bit1;
++it;
progress.CompletedPixel();
}
}
}
//Calculate the second derivative
template< class TInputImage, class TOutputImage >
void
CannyEdgeDetectionImageFilter< TInputImage, TOutputImage >
::Compute2ndDerivativePos()
{
CannyThreadStruct str;
str.Filter = this;
this->GetMultiThreader()->SetNumberOfThreads(this->GetNumberOfThreads());
this->GetMultiThreader()->SetSingleMethod(this->Compute2ndDerivativePosThreaderCallback, &str);
this->GetMultiThreader()->SingleMethodExecute();
}
template<class TInputImage, class TOutputImage>
ITK_THREAD_RETURN_TYPE
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>
::Compute2ndDerivativePosThreaderCallback( void * arg )
{
CannyThreadStruct *str;
int total, threadId, threadCount;
threadId = ((MultiThreader::ThreadInfoStruct *)(arg))->ThreadID;
threadCount = ((MultiThreader::ThreadInfoStruct *)(arg))->NumberOfThreads;
str = (CannyThreadStruct *)(((MultiThreader::ThreadInfoStruct *)(arg))->UserData);
// Execute the actual method with appropriate output region
// first find out how many pieces extent can be split into.
// Using the SplitRequestedRegion method from itk::ImageSource.
OutputImageRegionType splitRegion;
total = str->Filter->SplitRequestedRegion(threadId, threadCount,
splitRegion);
if (threadId < total)
{
str->Filter->ThreadedCompute2ndDerivativePos( splitRegion, threadId);
}
return ITK_THREAD_RETURN_VALUE;
}
template <class TInputImage, class TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << "Variance: " << m_Variance << std::endl;
os << "MaximumError: " << m_MaximumError << std::endl;
os << indent << "Threshold: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>
(m_Threshold)
<< std::endl;
os << indent << "UpperThreshold: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>
(m_UpperThreshold)
<< std::endl;
os << indent << "LowerThreshold: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>
(m_LowerThreshold)
<< std::endl;
os << indent << "OutsideValue: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_OutsideValue)
<< std::endl;
os << "Center: "
<< m_Center << std::endl;
os << "Stride: "
<< m_Stride << std::endl;
os << "Gaussian Filter: " << std::endl;
m_GaussianFilter->Print(os,indent.GetNextIndent());
os << "Multiply image Filter: " << std::endl;
m_MultiplyImageFilter->Print(os,indent.GetNextIndent());
os << "UpdateBuffer1: " << std::endl;
m_UpdateBuffer1->Print(os,indent.GetNextIndent());
}
}//end of itk namespace
#endif
|