File: itkConnectedComponentFunctorImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (242 lines) | stat: -rw-r--r-- 8,380 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkConnectedComponentFunctorImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2005-12-13 21:29:18 $
  Version:   $Revision: 1.3 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkConnectedComponentFunctorImageFilter_txx
#define _itkConnectedComponentFunctorImageFilter_txx

#include "itkConnectedComponentFunctorImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkEquivalencyTable.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkConstantBoundaryCondition.h"

namespace itk
{

template< class TInputImage, class TOutputImage, class TFunctor, class TMaskImage >
void
ConnectedComponentFunctorImageFilter< TInputImage, TOutputImage, TFunctor, TMaskImage >
::GenerateData()
{
  // create an equivalency table
  EquivalencyTable::Pointer eqTable = EquivalencyTable::New();

  InputPixelType     value, neighborValue;
  OutputPixelType    label, originalLabel, neighborLabel;
  OutputPixelType    maxLabel = NumericTraits<OutputPixelType>::Zero;
  const OutputPixelType maxPossibleLabel=NumericTraits<OutputPixelType>::max();

  typename TOutputImage::Pointer output = this->GetOutput();
  typename TInputImage::ConstPointer input = this->GetInput();

  // Allocate the output and initialize to unlabeled
  this->AllocateOutputs();
  output->FillBuffer(maxPossibleLabel);
  
  // Set up the boundary condition to be zero padded (used on output image)
  ConstantBoundaryCondition<TOutputImage> BC;
  BC.SetConstant(NumericTraits<OutputPixelType>::Zero);

  // Neighborhood iterators.  Let's use a shaped neighborhood so we can
  // restrict the access to face connected neighbors. These iterators
  // will be applied to both the input and the output image
  typedef ConstShapedNeighborhoodIterator<TInputImage> InputNeighborhoodIteratorType;
  typedef ConstShapedNeighborhoodIterator<TOutputImage> OutputNeighborhoodIteratorType;

  SizeType kernelRadius;
  kernelRadius.Fill(1);

  InputNeighborhoodIteratorType init(kernelRadius, input, output->GetRequestedRegion());
  OutputNeighborhoodIteratorType onit(kernelRadius, output, output->GetRequestedRegion());
  onit.OverrideBoundaryCondition(&BC); // assign the boundary condition
  
  // only activate the indices that are "previous" to the current
  // pixel and face connected (exclude the center pixel from the
  // neighborhood)
  //
  unsigned int d;
  typename OutputNeighborhoodIteratorType::OffsetType offset;

  if (!this->m_FullyConnected)
    {
    // only activate the "previous" neighbors that are face connected
    // to the current pixel. do not include the center pixel
    offset.Fill(0);
    for (d=0; d < InputImageType::ImageDimension; ++d)
      {
      offset[d] = -1;
      init.ActivateOffset(offset);
      onit.ActivateOffset(offset);
      offset[d] = 0;
      }
    }
  else
    {
    // activate all "previous" neighbors that are face+edge+vertex
    // connected to the current pixel. do not include the center pixel
    unsigned int centerIndex = onit.GetCenterNeighborhoodIndex();
    for (d=0; d < centerIndex; d++)
      {
      offset = onit.GetOffset(d);
      init.ActivateOffset(offset);
      onit.ActivateOffset(offset);
      }
    }

  // along with a neighborhood iterator on the output, use a standard
  // iterator on the input and output
  ImageRegionConstIterator<InputImageType> it;
  ImageRegionIterator<OutputImageType> oit;
  it = ImageRegionConstIterator<InputImageType>(input, output->GetRequestedRegion());
  oit = ImageRegionIterator<OutputImageType>(output, output->GetRequestedRegion());

  // Setup a progress reporter.  We have 2 stages to the algorithm so
  // pretend we have 2 times the number of pixels
  ProgressReporter progress(this, 0, 2*output->GetRequestedRegion().GetNumberOfPixels());

  // if the mask is set mark pixels not under the mask as background
  typename TMaskImage::ConstPointer mask = this->GetMaskImage();
  if (mask)
    {
    ImageRegionConstIterator<MaskImageType> mit;
    mit = ImageRegionConstIterator<MaskImageType>(mask,output->GetRequestedRegion());

    mit.GoToBegin();
    oit.GoToBegin();
    while (!mit.IsAtEnd())
      {
      if ( mit.Get() == NumericTraits<MaskPixelType>::Zero)
        {
        // mark pixel as unlabeled
        oit.Set(NumericTraits<OutputPixelType>::Zero);
        }
      
      ++mit;
      ++oit;
      }
    }

  // iterate over the image, labeling the objects and defining
  // equivalence classes.  Use the neighborhood iterator to access the
  // "previous" neighbor pixels and an output iterator to access the
  // current pixel
  init.GoToBegin();
  onit.GoToBegin();
  it.GoToBegin();
  oit.GoToBegin();
  while ( !oit.IsAtEnd() )
    {
    // Get the current pixel label
    label = oit.Get();
    value = it.Get();
    originalLabel = label;

    // If the pixel is not background
    if (label != NumericTraits<OutputPixelType>::Zero)
      {
      // loop over the "previous" neighbors to find labels.  this loop
      // may establish one or more new equivalence classes
      typename InputNeighborhoodIteratorType::ConstIterator isIt;
      typename OutputNeighborhoodIteratorType::ConstIterator osIt;
      for (isIt=init.Begin(),osIt=onit.Begin(); !osIt.IsAtEnd(); ++isIt,++osIt)
        {
        // get the label of the pixel previous to this one along a
        // particular dimension (neighbors activated in neighborhood iterator)
        neighborLabel = osIt.Get();

        // if the previous pixel has a label, verify equivalence or
        // establish a new equivalence
        if (neighborLabel != NumericTraits<OutputPixelType>::Zero)
          {
          // see if current pixel is connected to its neighbor
          neighborValue = isIt.Get(); 
          if (m_Functor(value,neighborValue))
            {
            // if current pixel is unlabeled, then copy the label from neighbor
            if (label == maxPossibleLabel)
              {
              // copy the label from the previous pixel
              label = neighborLabel;
              }
            // else if current pixel has a label that is not already
            // equivalent to the label of the previous pixel, then setup
            // a new equivalence.  
            else if ((label != neighborLabel)
                     && (eqTable->RecursiveLookup(label)
                         != eqTable->RecursiveLookup(neighborLabel))) 
              {
              eqTable->Add(label, neighborLabel);
              }
            }
          }
        }

      // if none of the "previous" neighbors were set, then make a new label
      if (originalLabel == label)
        {
        // create a new entry label
        if (maxLabel == maxPossibleLabel)
          {
          itkWarningMacro(<< "ConnectedComponentFunctorImageFilter::GenerateData: Number of labels " << (long) maxLabel << " exceeds number of available labels " << (long) maxPossibleLabel << " for the output type." );
          }
        else
          {
          ++maxLabel;
          }
        
        // assign the new label
        label = maxLabel;
        }

      // Finally, set the output pixel to whatever label we have
      if (label != originalLabel)
        {
        oit.Set( label );
        }
      }

    // move the iterators
    ++init;
    ++onit;
    ++it;
    ++oit;
    progress.CompletedPixel();
    }

  // Flatten the equavalency table
  eqTable->Flatten();

  // remap the labels
  oit.GoToBegin();
  while ( !oit.IsAtEnd() )
    {
    label = oit.Get();
    // if pixel has a label, write out the final equivalence
    if (label != NumericTraits<OutputPixelType>::Zero)
      {
      oit.Set( eqTable->Lookup( label ) );
      }
    ++oit;
    progress.CompletedPixel();
    }
}

} // end namespace itk

#endif