File: itkContourDirectedMeanDistanceImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (272 lines) | stat: -rwxr-xr-x 7,889 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkContourDirectedMeanDistanceImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-19 19:50:01 $
  Version:   $Revision: 1.8 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef _itkContourDirectedMeanDistanceImageFilter_txx
#define _itkContourDirectedMeanDistanceImageFilter_txx

#include "itkContourDirectedMeanDistanceImageFilter.h"

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkOffset.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkNumericTraits.h"
#include "itkSignedDanielssonDistanceMapImageFilter.h"
#include "itkProgressReporter.h"

namespace itk {


template<class TInputImage1, class TInputImage2>
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::ContourDirectedMeanDistanceImageFilter(): m_MeanDistance(1),m_Count(1)
{

  // this filter requires two input images
  this->SetNumberOfRequiredInputs( 2 );

  m_DistanceMap = NULL;
  m_ContourDirectedMeanDistance = NumericTraits<RealType>::Zero;      
}


template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::SetInput2( const TInputImage2 * image )
{
  this->SetNthInput(1, const_cast<TInputImage2 *>( image ) );      
}


template<class TInputImage1, class TInputImage2>
const typename ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::InputImage2Type *
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::GetInput2()
{
  return static_cast< const TInputImage2 * >
    (this->ProcessObject::GetInput(1));
}



template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::GenerateInputRequestedRegion()
{
  Superclass::GenerateInputRequestedRegion();

  // this filter requires:
  // - the largeset possible region of the first image
  // - the corresponding region of the second image
  if ( this->GetInput1() )
    {
    InputImage1Pointer image1 =
      const_cast< InputImage1Type * >( this->GetInput1() );
    image1->SetRequestedRegionToLargestPossibleRegion();

    if ( this->GetInput2() )
      {
      InputImage2Pointer image2 =
        const_cast< InputImage2Type * >( this->GetInput2() );
      image2->SetRequestedRegion( 
        this->GetInput1()->GetRequestedRegion() );
      }

    }
}


template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::EnlargeOutputRequestedRegion(DataObject *data)
{
  Superclass::EnlargeOutputRequestedRegion(data);
  data->SetRequestedRegionToLargestPossibleRegion();
}


template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::AllocateOutputs()
{
  // Pass the first input through as the output
  InputImage1Pointer image =
    const_cast< TInputImage1 * >( this->GetInput1() );
  this->GraftOutput( image );
}


template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::BeforeThreadedGenerateData()
{
  int numberOfThreads = this->GetNumberOfThreads();

  // Resize the thread temporaries
  m_MeanDistance.SetSize(numberOfThreads);
  m_Count.SetSize(numberOfThreads);
  
  // Initialize the temporaries
  m_MeanDistance.Fill(NumericTraits<RealType>::Zero);
  m_Count.Fill(0);

  // Compute SignedDanielsson distance from non-zero pixels in the second image
  typedef itk::SignedDanielssonDistanceMapImageFilter<InputImage2Type,DistanceMapType>
    FilterType;

  typename FilterType::Pointer filter = FilterType::New();

  filter->SetInput( this->GetInput2() );
  filter->Update();

  m_DistanceMap = filter->GetOutput();

}


template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::AfterThreadedGenerateData()
{
  int i;
    
  int numberOfThreads = this->GetNumberOfThreads();

 // find mean over all threads
  int count = 0;
  RealType sum = NumericTraits<RealType>::Zero;
  for( i = 0; i < numberOfThreads; i++)
    {
    sum += m_MeanDistance[i];
    count += m_Count[i];
    }
  if (count != 0)
    {
    m_ContourDirectedMeanDistance= sum/static_cast<RealType>(count);
    }
  else
    {
    m_ContourDirectedMeanDistance = NumericTraits<RealType>::Zero;
    }
}



template<class TInputImage1, class TInputImage2>
void
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::ThreadedGenerateData(const RegionType& outputRegionForThread,
                       int threadId) 
{
  unsigned int i;
  ZeroFluxNeumannBoundaryCondition<InputImage1Type> nbc;
    
  ConstNeighborhoodIterator<InputImage1Type> bit;
    
  typename  InputImage1Type::ConstPointer input  = this->GetInput();
    
  // Find the data-set boundary "faces"
  typedef typename InputImage1Type::SizeType InputSizeType;
  InputSizeType radius;
  radius.Fill(1);
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImage1Type>::FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImage1Type> bC;
  faceList = bC(input, outputRegionForThread, radius);
    
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImage1Type>::FaceListType::iterator fit;
    
  typedef typename InputImage1Type::PixelType   InputPixelType;

  // support progress methods/callbacks
  ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());
    

        
  // Process each of the boundary faces.  These are N-d regions which border
  // the edge of the buffer.
  for (fit=faceList.begin(); fit != faceList.end(); ++fit)
    { 
    ImageRegionConstIterator<DistanceMapType> it2 (m_DistanceMap, *fit);
    bit = ConstNeighborhoodIterator<InputImage1Type>(radius, input, *fit);
    unsigned int neighborhoodSize = bit.Size();

    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    bool bIsOnContour;
      
    while ( ! bit.IsAtEnd() )
      {
        
      // first test
      // if current pixel is not on, let's continue
      if( bit.GetCenterPixel() != itk::NumericTraits< InputPixelType >::Zero )
        {
          
        bIsOnContour = false;
          
        for (i = 0; i < neighborhoodSize; ++i)
          {
          // second test if at least one neighbour pixel is off
          // the center pixel belongs to contour
          if( bit.GetPixel(i) ==  itk::NumericTraits< InputPixelType >::Zero )
            {
            bIsOnContour = true;
            break;
            }
          }
          
        // set pixel center pixel value whether it is or not on contour
        if( bIsOnContour )
          {
          const RealType value = it2.Get();
          m_MeanDistance[threadId] += vnl_math_abs( value );
          m_Count[threadId]++;
          }
        }
      ++bit;
      ++it2;
      progress.CompletedPixel();
      }
    }
}


template<class TInputImage1, class TInputImage2>
void 
ContourDirectedMeanDistanceImageFilter<TInputImage1, TInputImage2>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "ContourDirectedMeanDistance: "  
     << m_ContourDirectedMeanDistance << std::endl;
}


}// end namespace itk
#endif