1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCurvatureNDAnisotropicDiffusionFunction.h,v $
Language: C++
Date: $Date: 2008-01-24 19:25:07 $
Version: $Revision: 1.18 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCurvatureNDAnisotropicDiffusionFunction_h_
#define __itkCurvatureNDAnisotropicDiffusionFunction_h_
#include "itkScalarAnisotropicDiffusionFunction.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
namespace itk {
/**
* \class CurvatureNDAnisotropicDiffusionFunction
*
* This class implements a variation on the classic, Perona-Malik anisotropic
* image diffusion equation as described in
* itkGradientNDAnisotropicDiffusionFunction. This object is a level-set
* analog of that equation and will be referred to below as the \em modified
* \em curvature \em diffusion \em equation (MCDE). MCDE does not exhibit
* the edge enhancing properties of classic anisotropic diffusion, which can under
* certain conditions undergo a ``negative'' diffusion,which enhances the
* contrast of edges. Equations of the form of MCDE always undergo positive
* diffusion, with the conductance term only varying the strength of that
* diffusion.
*
* \par
* Qualitatively, MCDE compares well with other non-linear diffusion
* techniques. It is less sensitive to contrast than classic Perona-Malik
* style diffusion, and preserves finer detailed structures in images.
* There is a potential speed trade-off for using this function in place of
* itkGradientNDAnisotropicDiffusionFunction. Each iteration of the solution
* takes roughly twice as long. Fewer iterations, however, may be required to
* reach an acceptable solution.
*
* \par
* The MCDE equation is given as:
*
* \f[ f_t = \mid \nabla f \mid \nabla \cdot c( \mid \nabla f \mid ) \frac{
* \nabla f }{ \mid \nabla f \mid } \f] ,
*
* \par
* where the conductance modified curvature term is
*
* \f[ \nabla \cdot \frac{\nabla f}{\mid \nabla f \mid} \f] .
*
* \par References
* R. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for
* Image Denoising, International Conference on Image Processing, 2001
* pp. 142-145, Vol.3.
*
*
* \sa AnisotropicDiffusionFunction
* \ingroup FiniteDifferenceFunctions
* \ingroup ImageEnhancement
* \todo References */
template <class TImage>
class ITK_EXPORT CurvatureNDAnisotropicDiffusionFunction :
public ScalarAnisotropicDiffusionFunction<TImage>
{
public:
/** Standard class typedefs. */
typedef CurvatureNDAnisotropicDiffusionFunction Self;
typedef ScalarAnisotropicDiffusionFunction<TImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro( CurvatureNDAnisotropicDiffusionFunction,
ScalarAnisotropicDiffusionFunction );
/** Inherit some parameters from the superclass type. */
typedef typename Superclass::ImageType ImageType;
typedef typename Superclass::PixelType PixelType;
typedef typename Superclass::TimeStepType TimeStepType;
typedef typename Superclass::RadiusType RadiusType;
typedef typename Superclass::NeighborhoodType NeighborhoodType;
typedef typename Superclass::FloatOffsetType FloatOffsetType;
/** Inherit some parameters from the superclass type. */
itkStaticConstMacro(ImageDimension, unsigned int,Superclass::ImageDimension);
/** Compute incremental update. */
virtual PixelType ComputeUpdate(const NeighborhoodType &neighborhood,
void *globalData,
const FloatOffsetType& offset = FloatOffsetType(0.0)
);
/** This method is called prior to each iteration of the solver. */
virtual void InitializeIteration()
{
m_K = static_cast<PixelType>(this->GetAverageGradientMagnitudeSquared() *
this->GetConductanceParameter() *
this->GetConductanceParameter() * -2.0f);
}
protected:
CurvatureNDAnisotropicDiffusionFunction();
~CurvatureNDAnisotropicDiffusionFunction() {}
void PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
private:
CurvatureNDAnisotropicDiffusionFunction(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
/** Inner product function. */
NeighborhoodInnerProduct<ImageType> m_InnerProduct;
/** Slices for the ND neighborhood. */
std::slice x_slice[ImageDimension];
std::slice xa_slice[ImageDimension][ImageDimension];
std::slice xd_slice[ImageDimension][ImageDimension];
/** Derivative operator */
DerivativeOperator<PixelType, itkGetStaticConstMacro(ImageDimension)> dx_op;
/** Modified global average gradient magnitude term. */
PixelType m_K;
/** */
static double m_MIN_NORM;
unsigned long m_Center;
unsigned long m_Stride[ImageDimension];
};
}// end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCurvatureNDAnisotropicDiffusionFunction.txx"
#endif
#endif
|