1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkDanielssonDistanceMapImageFilter.h,v $
Language: C++
Date: $Date: 2006-03-17 14:22:26 $
Version: $Revision: 1.30 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDanielssonDistanceMapImageFilter_h
#define __itkDanielssonDistanceMapImageFilter_h
#include <itkImageToImageFilter.h>
#include <itkImageRegionIteratorWithIndex.h>
namespace itk
{
/** \class DanielssonDistanceMapImageFilter
*
* This class is parametrized over the type of the input image
* and the type of the output image.
*
* This filter computes the distance map of the input image
* as an approximation with pixel accuracy to the Euclidean distance.
*
* The input is assumed to contain numeric codes defining objects.
* The filter will produce as output the following images:
*
* - A voronoi partition using the same numeric codes as the input.
* - A distance map with the approximation to the euclidean distance.
* from a particular pixel to the nearest object to this pixel
* in the input image.
* - A vector map containing the component of the vector relating
* the current pixel with the closest point of the closest object
* to this pixel. Given that the components of the distance are
* computed in "pixels", the vector is represented by an
* itk::Offset. That is, physical coordinates are not used.
*
* This filter is N-dimensional and known to be efficient
* in computational time. The algorithm is the N-dimensional version
* of the 4SED algorithm given for two dimensions in:
*
* Danielsson, Per-Erik. Euclidean Distance Mapping. Computer
* Graphics and Image Processing 14, 227-248 (1980).
*
* \ingroup ImageFeatureExtraction
*
*/
template <class TInputImage,class TOutputImage>
class ITK_EXPORT DanielssonDistanceMapImageFilter :
public ImageToImageFilter<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef DanielssonDistanceMapImageFilter Self;
typedef ImageToImageFilter<TInputImage,TOutputImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( DanielssonDistanceMapImageFilter, ImageToImageFilter );
/** Type for input image. */
typedef TInputImage InputImageType;
/** Type for two of the three output images: the VoronoiMap and the
* DistanceMap. */
typedef TOutputImage OutputImageType;
/** Type for the region of the input image. */
typedef typename InputImageType::RegionType RegionType;
/** Type for the index of the input image. */
typedef typename RegionType::IndexType IndexType;
/** Type for the index of the input image. */
typedef typename InputImageType::OffsetType OffsetType;
/** Type for the size of the input image. */
typedef typename RegionType::SizeType SizeType;
/** The dimension of the input and output images. */
itkStaticConstMacro(InputImageDimension, unsigned int,
InputImageType::ImageDimension);
itkStaticConstMacro(OutputImageDimension, unsigned int,
TOutputImage::ImageDimension);
/** Pointer Type for the vector distance image */
typedef Image< OffsetType,
itkGetStaticConstMacro(InputImageDimension)> VectorImageType;
/** Pointer Type for input image. */
typedef typename InputImageType::ConstPointer InputImagePointer;
/** Pointer Type for the output image. */
typedef typename OutputImageType::Pointer OutputImagePointer;
/** Pointer Type for the vector distance image. */
typedef typename VectorImageType::Pointer VectorImagePointer;
/** Set if the distance should be squared. */
itkSetMacro( SquaredDistance, bool );
/** Get the distance squared. */
itkGetConstReferenceMacro( SquaredDistance, bool );
/** Set On/Off if the distance is squared. */
itkBooleanMacro( SquaredDistance );
/** Set if the input is binary. If this variable is set, each
* nonzero pixel in the input image will be given a unique numeric
* code to be used by the Voronoi partition. If the image is binary
* but you are not interested in the Voronoi regions of the
* different nonzero pixels, then you need not set this. */
itkSetMacro( InputIsBinary, bool );
/** Get if the input is binary. See SetInputIsBinary(). */
itkGetConstReferenceMacro( InputIsBinary, bool );
/** Set On/Off if the input is binary. See SetInputIsBinary(). */
itkBooleanMacro( InputIsBinary );
/** Set if image spacing should be used in computing distances. */
itkSetMacro( UseImageSpacing, bool );
/** Get whether spacing is used. */
itkGetConstReferenceMacro( UseImageSpacing, bool );
/** Set On/Off whether spacing is used. */
itkBooleanMacro( UseImageSpacing );
/** Get Voronoi Map
* This map shows for each pixel what object is closest to it.
* Each object should be labeled by a number (larger than 0),
* so the map has a value for each pixel corresponding to the label
* of the closest object. */
OutputImageType * GetVoronoiMap(void);
/** Get Distance map image. The distance map is shown as a gray
* value image depending on the pixel type of the output image.
* Regarding the source image, background should be dark (gray value
* = 0) and object should have a gray value larger than 0. The
* minimal distance is calculated on the object frontier, and the
* output image gives for each pixel its minimal distance from the
* object (if there is more than one object the closest object is
* considered). */
OutputImageType * GetDistanceMap(void);
/** Get vector field of distances. */
VectorImageType * GetVectorDistanceMap(void);
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(SameDimensionCheck,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro(UnsignedIntConvertibleToOutputCheck,
(Concept::Convertible<unsigned int, typename TOutputImage::PixelType>));
itkConceptMacro(IntConvertibleToOutputCheck,
(Concept::Convertible<int, typename TOutputImage::PixelType>));
itkConceptMacro(DoubleConvertibleToOutputCheck,
(Concept::Convertible<double, typename TOutputImage::PixelType>));
itkConceptMacro(InputConvertibleToOutputCheck,
(Concept::Convertible<typename TInputImage::PixelType,
typename TOutputImage::PixelType>));
/** End concept checking */
#endif
protected:
DanielssonDistanceMapImageFilter();
virtual ~DanielssonDistanceMapImageFilter() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** Compute Danielsson distance map and Voronoi Map. */
void GenerateData();
/** Prepare data. */
void PrepareData();
/** Compute Voronoi Map. */
void ComputeVoronoiMap();
/** Update distance map locally. Used by GenerateData(). */
void UpdateLocalDistance(VectorImageType*,
const IndexType&,
const OffsetType&);
private:
DanielssonDistanceMapImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
bool m_SquaredDistance;
bool m_InputIsBinary;
bool m_UseImageSpacing;
}; // end of DanielssonDistanceMapImageFilter class
} //end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkDanielssonDistanceMapImageFilter.txx"
#endif
#endif
|