1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkDifferenceOfGaussiansGradientImageFilter.txx,v $
Language: C++
Date: $Date: 2003-09-10 14:28:46 $
Version: $Revision: 1.23 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDifferenceOfGaussiansGradientImageFilter_txx
#define __itkDifferenceOfGaussiansGradientImageFilter_txx
#include <math.h>
#include "itkProgressReporter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkImageRegionIterator.h"
namespace itk
{
template<typename TInputImage, typename TDataType>
DifferenceOfGaussiansGradientImageFilter< TInputImage, TDataType >
::DifferenceOfGaussiansGradientImageFilter()
{
itkDebugMacro(<< "DifferenceOfGaussiansGradientImageFilter::DifferenceOfGaussiansGradientImageFilter() called");
m_Width = 2;
}
template<typename TInputImage, typename TDataType>
void
DifferenceOfGaussiansGradientImageFilter< TInputImage, TDataType >
::GenerateData()
{
itkDebugMacro(<< "DifferenceOfGaussiansGradientImageFilter::GenerateData() called");
// Get the input and output pointers
typename Superclass::InputImagePointer inputPtr =
const_cast< TInputImage * >( this->GetInput(0));
typename Superclass::OutputImagePointer outputPtr = this->GetOutput(0);
// Make sure we're getting everything
inputPtr->SetRequestedRegionToLargestPossibleRegion();
// How big is the input image?
typename TInputImage::SizeType size = inputPtr->GetLargestPossibleRegion().GetSize();
// Create a region object native to the output image type
OutputImageRegionType outputRegion;
// Resize the output region
outputRegion.SetSize( size );
// Set the largest legal region size (i.e. the size of the whole image)
// to what we just defined
outputPtr->SetBufferedRegion( outputRegion );
outputPtr->Allocate();
// Create a progress reporter
ProgressReporter progress(this, 0, outputPtr->GetRequestedRegion().GetNumberOfPixels());
// Create an iterator that will walk the output region
typedef ImageRegionIterator<TOutputImage> OutputIterator;
OutputIterator outIt = OutputIterator(outputPtr,
outputPtr->GetRequestedRegion());
// Define a few indices that will be used to translate from an input pixel
// to an output pixel
typename TOutputImage::IndexType outputIndex;
typename TOutputImage::IndexType upperIndex;
typename TOutputImage::IndexType lowerIndex;
// walk the output image, and sample the input image
for ( ; !outIt.IsAtEnd(); ++outIt)
{
// determine the index of the output pixel
outputIndex = outIt.GetIndex();
// is the current index an acceptable distance from the edges
// of the image?
bool isValidGrad = true;
for (unsigned int i = 0; i < NDimensions; ++i)
{
const int width = static_cast<int>(m_Width);
const int sizeDifference =
static_cast<int>(size.m_Size[i]) - width;
if( !( (outputIndex[i] < sizeDifference ) &&
(outputIndex[i] >= width ) ) )
{
isValidGrad = false;
}
}
if (isValidGrad)
{
// We're in a safe position, so calculate the gradient for
// each dimension
for (unsigned int i = 0; i < NDimensions; i++)
{
// Build the indices for each pixel
for (unsigned int j = 0; j < NDimensions; j++)
{
if(j == i)
{
upperIndex[j] = outputIndex[j] + static_cast<typename TOutputImage::IndexValueType>(m_Width);
lowerIndex[j] = outputIndex[j] - static_cast<typename TOutputImage::IndexValueType>(m_Width);
}
else
{
upperIndex[j] = outputIndex[j];
lowerIndex[j] = outputIndex[j];
}
}
// Remember, output type is a covariant vector of TDataType
outputPtr->GetPixel(outputIndex)[i] =
inputPtr->GetPixel(upperIndex) - inputPtr->GetPixel(lowerIndex);
}
}
else // We're not in a safe position, gradient is zero
{
for (unsigned int i = 0; i < NDimensions; ++i)
outputPtr->GetPixel(outputIndex)[i] = 0.0;
}
progress.CompletedPixel();
}
itkDebugMacro(<< "DifferenceOfGaussiansGradientImageFilter::GenerateData() finished");
}
template<typename TInputImage, typename TDataType>
void
DifferenceOfGaussiansGradientImageFilter< TInputImage, TDataType >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Width is " << m_Width << std::endl;
}
} // end namespace
#endif
|