1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkDiffusionTensor3DReconstructionImageFilter.txx,v $
Language: C++
Date: $Date: 2006-07-19 15:11:41 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDiffusionTensor3DReconstructionImageFilter_txx
#define __itkDiffusionTensor3DReconstructionImageFilter_txx
#include "itkDiffusionTensor3DReconstructionImageFilter.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkArray.h"
#include "vnl/vnl_vector.h"
namespace itk {
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::DiffusionTensor3DReconstructionImageFilter()
{
// At least 1 inputs is necessary for a vector image.
// For images added one at a time we need at least six
this->SetNumberOfRequiredInputs( 1 );
m_NumberOfGradientDirections = 0;
m_NumberOfBaselineImages = 1;
m_Threshold = NumericTraits< ReferencePixelType >::min();
m_GradientImageTypeEnumeration = Else;
m_GradientDirectionContainer = NULL;
m_TensorBasis.set_identity();
m_BValue = 1.0;
}
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::BeforeThreadedGenerateData()
{
// If we have more than 2 inputs, then each input, except the first is a
// gradient image. The number of gradient images must match the number of
// gradient directions.
const unsigned int numberOfInputs = this->GetNumberOfInputs();
// There need to be at least 6 gradient directions to be able to compute the
// tensor basis
if( m_NumberOfGradientDirections < 6 )
{
itkExceptionMacro( << "At least 6 gradient directions are required" );
}
// If there is only 1 gradient image, it must be an itk::VectorImage. Otherwise
// we must have a container of (numberOfInputs-1) itk::Image. Check to make sure
if ( numberOfInputs == 1
&& m_GradientImageTypeEnumeration != GradientIsInASingleImage )
{
std::string gradientImageClassName(
this->ProcessObject::GetInput(0)->GetNameOfClass());
if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 )
{
itkExceptionMacro( <<
"There is only one Gradient image. I expect that to be a VectorImage. "
<< "But its of type: " << gradientImageClassName );
}
}
this->ComputeTensorBasis();
}
// POTENTIAL WARNING:
//
// Until we fix netlib svd routines, we will need to set the number of thread
// to 1.
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
int )
{
typename OutputImageType::Pointer outputImage =
static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0));
ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread);
oit.GoToBegin();
vnl_vector<double> B(m_NumberOfGradientDirections);
vnl_vector<double> D(6);
// Two cases here .
// 1. If the Gradients have been specified in multiple images, we will create
// 'n' iterators for each of the gradient images and solve the Stejskal-Tanner
// equations for every pixel.
// 2. If the Gradients have been specified in a single multi-component image,
// one iterator will suffice to do the same.
if( m_GradientImageTypeEnumeration == GradientIsInManyImages )
{
ImageRegionConstIterator< ReferenceImageType >
it(static_cast< ReferenceImageType * >(this->ProcessObject::GetInput(0)),
outputRegionForThread);
it.GoToBegin();
typedef ImageRegionConstIterator< GradientImageType > GradientIteratorType;
std::vector< GradientIteratorType * > gradientItContainer;
for( unsigned int i = 1; i<= m_NumberOfGradientDirections; i++ )
{
typename GradientImageType::Pointer gradientImagePointer = NULL;
// Would have liked a dynamic_cast here, but seems SGI doesn't like it
// The enum will ensure that an inappropriate cast is not done
gradientImagePointer = static_cast< GradientImageType * >(
this->ProcessObject::GetInput(i) );
GradientIteratorType *git = new GradientIteratorType(
gradientImagePointer, outputRegionForThread );
git->GoToBegin();
gradientItContainer.push_back(git);
}
// Iterate over the reference and gradient images and solve the steskal
// equations to reconstruct the Diffusion tensor.
// See splweb.bwh.harvard.edu:8000/pages/papers/westin/ISMRM2002.pdf
// "A Dual Tensor Basis Solution to the Stejskal-Tanner Equations for DT-MRI"
while( !it.IsAtEnd() )
{
ReferencePixelType b0 = it.Get();
TensorPixelType tensor(0.0);
if( (b0 != 0) && (b0 >= m_Threshold) )
{
for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ )
{
GradientPixelType b = gradientItContainer[i]->Get();
if( b == 0 )
{
B[i] = 0;
}
else
{
B[i] = -log( static_cast<double>(b) / static_cast<double>(b0) )/this->m_BValue;
}
++(*gradientItContainer[i]);
}
vnl_svd< double > pseudoInverseSolver( m_TensorBasis );
if( m_NumberOfGradientDirections > 6 )
{
D = pseudoInverseSolver.solve( m_BMatrix * B );
}
else
{
D = pseudoInverseSolver.solve( B );
}
tensor(0,0) = D[0];
tensor(0,1) = D[1];
tensor(0,2) = D[2];
tensor(1,1) = D[3];
tensor(1,2) = D[4];
tensor(2,2) = D[5];
}
else
{
for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ )
{
++(*gradientItContainer[i]);
}
}
oit.Set( tensor );
++oit;
++it;
}
for( unsigned int i = 0; i< gradientItContainer.size(); i++ )
{
delete gradientItContainer[i];
}
}
// The gradients are specified in a single multi-component image
else if( m_GradientImageTypeEnumeration == GradientIsInASingleImage )
{
typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType;
typedef typename GradientImagesType::PixelType GradientVectorType;
typename GradientImagesType::Pointer gradientImagePointer = NULL;
// Would have liked a dynamic_cast here, but seems SGI doesn't like it
// The enum will ensure that an inappropriate cast is not done
gradientImagePointer = static_cast< GradientImagesType * >(
this->ProcessObject::GetInput(0) );
GradientIteratorType git(gradientImagePointer, outputRegionForThread );
git.GoToBegin();
// Compute the indicies of the baseline images and gradient images
std::vector<unsigned int> baselineind; // contains the indicies of
// the baseline images
std::vector<unsigned int> gradientind; // contains the indicies of
// the gradient images
for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin();
gdcit != this->m_GradientDirectionContainer->End(); ++gdcit)
{
if(gdcit.Value().one_norm() <= 0.0)
{
baselineind.push_back(gdcit.Index());
}
else
{
gradientind.push_back(gdcit.Index());
}
}
while( !git.IsAtEnd() )
{
GradientVectorType b = git.Get();
typename NumericTraits<ReferencePixelType>::AccumulateType b0 = NumericTraits<ReferencePixelType>::Zero;
// Average the baseline image pixels
for(unsigned int i = 0; i < baselineind.size(); ++i)
{
b0 += b[baselineind[i]];
}
b0 /= this->m_NumberOfBaselineImages;
TensorPixelType tensor(0.0);
if( (b0 != 0) && (b0 >= m_Threshold) )
{
for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ )
{
if( b[gradientind[i]] == 0 )
{
B[i] = 0;
}
else
{
B[i] = -log( static_cast<double>(b[gradientind[i]]) / static_cast<double>(b0) ) / this->m_BValue;
}
}
vnl_svd< double > pseudoInverseSolver( m_TensorBasis );
if( m_NumberOfGradientDirections > 6 )
{
D = pseudoInverseSolver.solve( m_BMatrix * B );
}
else
{
D = pseudoInverseSolver.solve( B );
}
tensor(0,0) = D[0];
tensor(0,1) = D[1];
tensor(0,2) = D[2];
tensor(1,1) = D[3];
tensor(1,2) = D[4];
tensor(2,2) = D[5];
}
oit.Set( tensor );
++oit; // Output (reconstructed tensor image) iterator
++git; // Gradient image iterator
}
}
}
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::ComputeTensorBasis()
{
if( m_NumberOfGradientDirections < 6 )
{
itkExceptionMacro( << "Not enough gradient directions supplied. Need to supply at least 6" );
}
// This is only important if we are using a vector image. For
// images added one at a time, this is not needed but doesn't hurt.
std::vector<unsigned int> gradientind;
for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin();
gdcit != this->m_GradientDirectionContainer->End(); ++gdcit)
{
if(gdcit.Value().one_norm() > 0.0)
{
gradientind.push_back(gdcit.Index());
}
}
m_BMatrix.set_size( m_NumberOfGradientDirections, 6 );
for (unsigned int m = 0; m < m_NumberOfGradientDirections; m++)
{
m_BMatrix[m][0] = m_GradientDirectionContainer->ElementAt(gradientind[m])[0] * m_GradientDirectionContainer->ElementAt(gradientind[m])[0];
m_BMatrix[m][1] = 2 * m_GradientDirectionContainer->ElementAt(gradientind[m])[0] * m_GradientDirectionContainer->ElementAt(gradientind[m])[1];
m_BMatrix[m][2] = 2 * m_GradientDirectionContainer->ElementAt(gradientind[m])[0] * m_GradientDirectionContainer->ElementAt(gradientind[m])[2];
m_BMatrix[m][3] = m_GradientDirectionContainer->ElementAt(gradientind[m])[1] * m_GradientDirectionContainer->ElementAt(gradientind[m])[1];
m_BMatrix[m][4] = 2 * m_GradientDirectionContainer->ElementAt(gradientind[m])[1] * m_GradientDirectionContainer->ElementAt(gradientind[m])[2];
m_BMatrix[m][5] = m_GradientDirectionContainer->ElementAt(gradientind[m])[2] * m_GradientDirectionContainer->ElementAt(gradientind[m])[2];
}
if( m_NumberOfGradientDirections > 6 )
{
m_TensorBasis = m_BMatrix.transpose() * m_BMatrix;
}
else
{
m_TensorBasis = m_BMatrix;
}
m_BMatrix.inplace_transpose();
}
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::AddGradientImage( const GradientDirectionType &gradientDirection,
const GradientImageType *gradientImage )
{
// Make sure crazy users did not call both AddGradientImage and
// SetGradientImage
if( m_GradientImageTypeEnumeration == GradientIsInASingleImage)
{
itkExceptionMacro( << "Cannot call both methods:"
<< "AddGradientImage and SetGradientImage. Please call only one of them.");
}
// If the container to hold the gradient directions hasn't been allocated
// yet, allocate it.
if( !this->m_GradientDirectionContainer )
{
this->m_GradientDirectionContainer = GradientDirectionContainerType::New();
}
m_GradientDirectionContainer->InsertElement(
m_NumberOfGradientDirections, gradientDirection / gradientDirection.two_norm() );
++m_NumberOfGradientDirections;
this->ProcessObject::SetNthInput( m_NumberOfGradientDirections,
const_cast< GradientImageType* >(gradientImage) );
m_GradientImageTypeEnumeration = GradientIsInManyImages;
}
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::SetGradientImage( GradientDirectionContainerType *gradientDirection,
const GradientImagesType *gradientImage )
{
// Make sure crazy users did not call both AddGradientImage and
// SetGradientImage
if( m_GradientImageTypeEnumeration == GradientIsInManyImages )
{
itkExceptionMacro( << "Cannot call both methods:"
<< "AddGradientImage and SetGradientImage. Please call only one of them.");
}
this->m_GradientDirectionContainer = gradientDirection;
unsigned int numImages = gradientDirection->Size();
this->m_NumberOfBaselineImages = 0;
for(GradientDirectionContainerType::Iterator it = this->m_GradientDirectionContainer->Begin();
it != this->m_GradientDirectionContainer->End(); it++)
{
if(it.Value().one_norm() <= 0.0)
{
this->m_NumberOfBaselineImages++;
}
else // Normalize non-zero gradient directions
{
it.Value() = it.Value() / it.Value().two_norm();
}
}
this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages;
// ensure that the gradient image we received has as many components as
// the number of gradient directions
if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + this->m_NumberOfGradientDirections )
{
itkExceptionMacro( << this->m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages
<< "baselines = " << this->m_NumberOfGradientDirections + this->m_NumberOfBaselineImages
<< " directions specified but image has " << gradientImage->GetVectorLength()
<< " components.");
}
this->ProcessObject::SetNthInput( 0,
const_cast< GradientImagesType* >(gradientImage) );
m_GradientImageTypeEnumeration = GradientIsInASingleImage;
}
template< class TReferenceImagePixelType,
class TGradientImagePixelType, class TTensorPixelType >
void DiffusionTensor3DReconstructionImageFilter< TReferenceImagePixelType,
TGradientImagePixelType, TTensorPixelType >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "TensorBasisMatrix: " << m_TensorBasis << std::endl;
os << indent << "Coeffs: " << m_BMatrix << std::endl;
if ( m_GradientDirectionContainer )
{
os << indent << "GradientDirectionContainer: "
<< m_GradientDirectionContainer << std::endl;
}
else
{
os << indent <<
"GradientDirectionContainer: (Gradient directions not set)" << std::endl;
}
os << indent << "NumberOfGradientDirections: " <<
m_NumberOfGradientDirections << std::endl;
os << indent << "NumberOfBaselineImages: " <<
m_NumberOfBaselineImages << std::endl;
os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl;
os << indent << "BValue: " << m_BValue << std::endl;
if ( this->m_GradientImageTypeEnumeration == GradientIsInManyImages )
{
os << indent << "Gradient images haven been supplied " << std::endl;
}
else if ( this->m_GradientImageTypeEnumeration == GradientIsInManyImages )
{
os << indent << "A multicomponent gradient image has been supplied" << std::endl;
}
}
}
#endif
|