File: itkDiscreteGaussianImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (250 lines) | stat: -rw-r--r-- 8,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkDiscreteGaussianImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2006-03-27 17:01:06 $
  Version:   $Revision: 1.39 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkDiscreteGaussianImageFilter_h
#define __itkDiscreteGaussianImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkFixedArray.h"
#include "itkImage.h"

namespace itk
{
/**
 * \class DiscreteGaussianImageFilter
 * \brief Blurs an image by separable convolution with discrete gaussian kernels.
 * This filter performs Gaussian blurring by separable convolution of an image
 * and a discrete Gaussian operator (kernel).
 *
 * The Gaussian operator used here was described by Tony Lindeberg (Discrete
 * Scale-Space Theory and the Scale-Space Primal Sketch.  Dissertation. Royal
 * Institute of Technology, Stockholm, Sweden. May 1991.) The Gaussian kernel
 * used here was designed so that smoothing and derivative operations commute
 * after discretization.
 *
 * The variance or standard deviation (sigma) will be evaluated as pixel units
 * if SetUseImageSpacing is off (false) or as physical units if
 * SetUseImageSpacing is on (true, default). The variance can be set
 * independently in each dimension.
 *
 * When the Gaussian kernel is small, this filter tends to run faster than
 * itk::RecursiveGaussianImageFilter.
 * 
 * \sa GaussianOperator
 * \sa Image
 * \sa Neighborhood
 * \sa NeighborhoodOperator
 * 
 * \ingroup ImageEnhancement 
 * \ingroup ImageFeatureExtraction 
 */

template <class TInputImage, class TOutputImage >
class ITK_EXPORT DiscreteGaussianImageFilter :
    public ImageToImageFilter< TInputImage, TOutputImage > 
{
public:
  /** Standard class typedefs. */
  typedef DiscreteGaussianImageFilter Self;
  typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(DiscreteGaussianImageFilter, ImageToImageFilter);
  
  /** Image type information. */
  typedef TInputImage  InputImageType;
  typedef TOutputImage OutputImageType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  typedef typename TOutputImage::PixelType OutputPixelType;
  typedef typename TOutputImage::InternalPixelType OutputInternalPixelType;
  typedef typename TInputImage::PixelType InputPixelType;
  typedef typename TInputImage::InternalPixelType InputInternalPixelType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TOutputImage::ImageDimension);
  
  /** Typedef of double containers */
  typedef FixedArray<double, itkGetStaticConstMacro(ImageDimension)> ArrayType;

  /** The variance for the discrete Gaussian kernel.  Sets the variance
   * independently for each dimension, but 
   * see also SetVariance(const double v). The default is 0.0 in each
   * dimension. If UseImageSpacing is true, the units are the physical units
   * of your image.  If UseImageSpacing is false then the units are pixels.*/
  itkSetMacro(Variance, ArrayType);
  itkGetMacro(Variance, const ArrayType);

  /** The algorithm will size the discrete kernel so that the error
   * resulting from truncation of the kernel is no greater than
   * MaximumError. The default is 0.01 in each dimension. */
  itkSetMacro(MaximumError, ArrayType);
  itkGetMacro(MaximumError, const ArrayType);

  /** Set the kernel to be no wider than MaximumKernelWidth pixels,
   *  even if MaximumError demands it. The default is 32 pixels. */
  itkGetMacro(MaximumKernelWidth, int);
  itkSetMacro(MaximumKernelWidth, int);

  /** Set the number of dimensions to smooth. Defaults to the image
   * dimension. Can be set to less than ImageDimension, smoothing all
   * the dimensions less than FilterDimensionality.  For instance, to
   * smooth the slices of a volume without smoothing in Z, set the
   * FilterDimensionality to 2. */
  itkGetMacro(FilterDimensionality, unsigned int);
  itkSetMacro(FilterDimensionality, unsigned int);
  
  /** Convenience Set methods for setting all dimensional parameters
   *  to the same values. */
  void SetVariance (const typename ArrayType::ValueType v)
    {
      m_Variance.Fill(v);
    }

  void SetMaximumError (const typename ArrayType::ValueType v)
    {
      m_MaximumError.Fill(v);
    }

  void SetVariance (const double *v)
    {
      ArrayType dv;
      for (unsigned int i = 0; i < ImageDimension; i++)
        {
        dv[i] = v[i];
        }
      this->SetVariance(dv);
    }

  void SetVariance (const float *v)
    {
      ArrayType dv;
      for (unsigned int i = 0; i < ImageDimension; i++)
        {
        dv[i] = v[i];
        }
      this->SetVariance(dv);
    }

  void SetMaximumError (const double *v)
    {
      ArrayType dv;
      for (unsigned int i = 0; i < ImageDimension; i++)
        {
        dv[i] = v[i];
        }
      this->SetMaximumError(dv);
    }

  void SetMaximumError (const float *v)
    {
      ArrayType dv;
      for (unsigned int i = 0; i < ImageDimension; i++)
        {
        dv[i] = v[i];
        }
      this->SetMaximumError(dv);
    }

  /** Use the image spacing information in calculations. Use this option if you
   *  want to specify Gaussian variance in real world units.  Default is
   *   ImageSpacingOn. */
  void SetUseImageSpacingOn()
  { this->SetUseImageSpacing(true); }
  
  /** Ignore the image spacing. Use this option if you want to specify Gaussian
      variance in pixels.  Default is ImageSpacingOn. */
  void SetUseImageSpacingOff()
  { this->SetUseImageSpacing(false); }
  
  /** Set/Get whether or not the filter will use the spacing of the input
      image in its calculations */
  itkSetMacro(UseImageSpacing, bool);
  itkGetMacro(UseImageSpacing, bool);
  
  /** DiscreteGaussianImageFilter needs a larger input requested region
   * than the output requested region (larger by the size of the
   * Gaussian kernel).  As such, DiscreteGaussianImageFilter needs to
   * provide an implementation for GenerateInputRequestedRegion() in
   * order to inform the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(OutputHasNumericTraitsCheck,
    (Concept::HasNumericTraits<OutputPixelType>));
  /** End concept checking */
#endif

protected:
  DiscreteGaussianImageFilter()
  {
    m_Variance.Fill(0.0);
    m_MaximumError.Fill(0.01);
    m_MaximumKernelWidth = 32;
    m_UseImageSpacing = true;
    m_FilterDimensionality = ImageDimension;
  }
  virtual ~DiscreteGaussianImageFilter() {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Standard pipeline method. While this class does not implement a
   * ThreadedGenerateData(), its GenerateData() delegates all
   * calculations to an NeighborhoodOperatorImageFilter.  Since the
   * NeighborhoodOperatorImageFilter is multithreaded, this filter is
   * multithreaded by default. */
  void GenerateData();

  
private:
  DiscreteGaussianImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  /** The variance of the gaussian blurring kernel in each dimensional direction. */
  ArrayType m_Variance;

  /** The maximum error of the gaussian blurring kernel in each dimensional
   * direction. For definition of maximum error, see GaussianOperator.
   * \sa GaussianOperator */
  ArrayType m_MaximumError;

  /** Maximum allowed kernel width for any dimension of the discrete Gaussian
      approximation */
  int m_MaximumKernelWidth;

  /** Number of dimensions to process. Default is all dimensions */
  unsigned int m_FilterDimensionality;

  /** Flag to indicate whether to use image spacing */
  bool m_UseImageSpacing;
};
  
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkDiscreteGaussianImageFilter.txx"
#endif

#endif