1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkDoubleThresholdImageFilter.txx,v $
Language: C++
Date: $Date: 2006-08-01 19:16:17 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDoubleThresholdImageFilter_txx
#define __itkDoubleThresholdImageFilter_txx
#include "itkDoubleThresholdImageFilter.h"
#include "itkReconstructionByDilationImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkProgressAccumulator.h"
namespace itk {
template <class TInputImage, class TOutputImage>
DoubleThresholdImageFilter<TInputImage, TOutputImage>
::DoubleThresholdImageFilter()
: m_NumberOfIterationsUsed( 1 )
{
m_Threshold1 = NumericTraits<InputPixelType>::NonpositiveMin();
m_Threshold2 = NumericTraits<InputPixelType>::NonpositiveMin();
m_Threshold3 = NumericTraits<InputPixelType>::max();
m_Threshold4 = NumericTraits<InputPixelType>::max();
m_OutsideValue = NumericTraits<OutputPixelType>::Zero;
m_InsideValue = NumericTraits<OutputPixelType>::max();
m_FullyConnected = false;
}
template <class TInputImage, class TOutputImage>
void
DoubleThresholdImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
if( input )
{
input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}
}
template <class TInputImage, class TOutputImage>
void
DoubleThresholdImageFilter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}
template<class TInputImage, class TOutputImage>
void
DoubleThresholdImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
// Allocate the output
this->AllocateOutputs();
// Build a mini-pipeline that involves two thresholds filters and a
// geodesic dilation.
typedef BinaryThresholdImageFilter<TInputImage, TOutputImage> ThresholdFilterType;
typedef ReconstructionByDilationImageFilter<TOutputImage, TOutputImage> DilationFilterType;
typename ThresholdFilterType::Pointer narrowThreshold = ThresholdFilterType::New();
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
narrowThreshold->SetLowerThreshold( m_Threshold2 );
narrowThreshold->SetUpperThreshold( m_Threshold3 );
narrowThreshold->SetInsideValue( m_InsideValue );
narrowThreshold->SetOutsideValue( m_OutsideValue );
narrowThreshold->SetInput( this->GetInput() );
typename ThresholdFilterType::Pointer wideThreshold = ThresholdFilterType::New();
wideThreshold->SetLowerThreshold( m_Threshold1 );
wideThreshold->SetUpperThreshold( m_Threshold4 );
wideThreshold->SetInsideValue( m_InsideValue );
wideThreshold->SetOutsideValue( m_OutsideValue );
wideThreshold->SetInput( this->GetInput() );
typename DilationFilterType::Pointer dilate = DilationFilterType::New();
dilate->SetMarkerImage( narrowThreshold->GetOutput() );
dilate->SetMaskImage( wideThreshold->GetOutput() );
dilate->SetFullyConnected( m_FullyConnected );
//dilate->RunOneIterationOff(); // run to convergence
progress->RegisterInternalFilter(narrowThreshold,.1f);
progress->RegisterInternalFilter(wideThreshold,.1f);
progress->RegisterInternalFilter(dilate,.8f);
// graft our output to the dilate filter to force the proper regions
// to be generated
dilate->GraftOutput( this->GetOutput() );
// reconstruction by dilation
dilate->Update();
// graft the output of the dilate filter back onto this filter's
// output. this is needed to get the appropriate regions passed
// back.
this->GraftOutput( dilate->GetOutput() );
}
template<class TInputImage, class TOutputImage>
void
DoubleThresholdImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Threshold1: "
<< static_cast<typename NumericTraits<InputPixelType>::PrintType>(m_Threshold1)
<< std::endl;
os << indent << "Threshold2: "
<< static_cast<typename NumericTraits<InputPixelType>::PrintType>(m_Threshold2)
<< std::endl;
os << indent << "Threshold3: "
<< static_cast<typename NumericTraits<InputPixelType>::PrintType>(m_Threshold3)
<< std::endl;
os << indent << "Threshold4: "
<< static_cast<typename NumericTraits<InputPixelType>::PrintType>(m_Threshold4)
<< std::endl;
os << indent << "InsideValue: "
<< static_cast<typename NumericTraits<OutputPixelType>::PrintType>(m_InsideValue)
<< std::endl;
os << indent << "OutsideValue: "
<< static_cast<typename NumericTraits<OutputPixelType>::PrintType>(m_OutsideValue)
<< std::endl;
os << indent << "Number of iterations used to produce current output: "
<< m_NumberOfIterationsUsed << std::endl;
os << indent << "FullyConnected: " << m_FullyConnected << std::endl;
}
}// end namespace itk
#endif
|