File: itkGradientMagnitudeRecursiveGaussianImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (269 lines) | stat: -rw-r--r-- 7,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGradientMagnitudeRecursiveGaussianImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2006-08-01 19:16:17 $
  Version:   $Revision: 1.18 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkGradientMagnitudeRecursiveGaussianImageFilter_txx
#define _itkGradientMagnitudeRecursiveGaussianImageFilter_txx

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"

namespace itk
{


/**
 * Constructor
 */
template <typename TInputImage, typename TOutputImage >
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GradientMagnitudeRecursiveGaussianImageFilter()
{

  m_NormalizeAcrossScale = false;

  m_DerivativeFilter = DerivativeFilterType::New();
  m_DerivativeFilter->SetOrder( DerivativeFilterType::FirstOrder );
  m_DerivativeFilter->SetNormalizeAcrossScale( m_NormalizeAcrossScale );

  m_DerivativeFilter->ReleaseDataFlagOn();

  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ] = GaussianFilterType::New();
    m_SmoothingFilters[ i ]->SetOrder( GaussianFilterType::ZeroOrder );
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
    m_SmoothingFilters[ i ]->ReleaseDataFlagOn();
    }

  m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
  for( unsigned int i = 1; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetInput( m_SmoothingFilters[i-1]->GetOutput() );
    }
  
  this->SetSigma( 1.0 );

  this->InPlaceOff();
}


template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
}

/**
 * Set value of Sigma
 */
template <typename TInputImage, typename TOutputImage>
void 
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigma( RealType sigma )
{

  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetSigma( sigma );
    }
  m_DerivativeFilter->SetSigma( sigma );

  this->Modified();

}




/**
 * Set Normalize Across Scale Space
 */
template <typename TInputImage, typename TOutputImage>
void 
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNormalizeAcrossScale( bool normalize )
{

  m_NormalizeAcrossScale = normalize;

  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( normalize );
    }
  m_DerivativeFilter->SetNormalizeAcrossScale( normalize );

  this->Modified();

}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // This filter needs all of the input
  typename GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>::InputImagePointer image = const_cast<InputImageType *>( this->GetInput() );
  if( image )
    {
    image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
    }
}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
  TOutputImage *out = dynamic_cast<TOutputImage*>(output);

  if (out)
    {
    out->SetRequestedRegion( out->GetLargestPossibleRegion() );
    }
}

/**
 * Compute filter for Gaussian kernel
 */
template <typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage >
::GenerateData(void)
{

  itkDebugMacro(<< "GradientMagnitudeRecursiveGaussianImageFilter generating data ");

  const typename TInputImage::ConstPointer   inputImage( this->GetInput() );

  typename TOutputImage::Pointer outputImage( this->GetOutput() );

  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  typename CumulativeImageType::Pointer cumulativeImage = CumulativeImageType::New();
  cumulativeImage->SetRegions( inputImage->GetBufferedRegion() );
  cumulativeImage->Allocate();
  cumulativeImage->FillBuffer( NumericTraits< InternalRealType >::Zero );

  m_DerivativeFilter->SetInput( inputImage );

  const unsigned int numberOfFilterRuns = ImageDimension * ImageDimension;
  progress->RegisterInternalFilter(m_DerivativeFilter, 1.0f / numberOfFilterRuns );

  for( unsigned int k=0; k < ImageDimension-1; k++ )
    {
    progress->RegisterInternalFilter( m_SmoothingFilters[k], 1.0f / numberOfFilterRuns );
    }

  for( unsigned int dim=0; dim < ImageDimension; dim++ )
    {
    unsigned int i=0; 
    unsigned int j=0;
    while(  i < ImageDimension-1 )
      {
      if( i == dim ) 
        {
        j++;
        }
      m_SmoothingFilters[ i ]->SetDirection( j );
      i++;
      j++;
      }
    m_DerivativeFilter->SetDirection( dim );

    GaussianFilterPointer lastFilter = m_SmoothingFilters[ImageDimension-2];

    lastFilter->Update();
    
    progress->ResetFilterProgressAndKeepAccumulatedProgress();

    // Cummulate the results on the output image

    typename RealImageType::Pointer derivativeImage = lastFilter->GetOutput(); 

    ImageRegionIterator< RealImageType > it( 
      derivativeImage, 
      derivativeImage->GetRequestedRegion() );

    ImageRegionIterator< CumulativeImageType > ot( 
      cumulativeImage, 
      cumulativeImage->GetRequestedRegion() );
  
    const RealType spacing = inputImage->GetSpacing()[ dim ];

    it.GoToBegin();
    ot.GoToBegin();
    while( !it.IsAtEnd() )
      {
      ot.Value() += vnl_math_sqr( it.Get() / spacing );
      ++it;
      ++ot;
      }

    }

  // Release the data on the last smoother since we have acculumated
  // its data into our cumulative image.
  m_SmoothingFilters[ImageDimension-2]->GetOutput()->ReleaseData();

  // Now allocate the output image (postponed the allocation until
  // after all the subfilters ran to minimize total memory footprint)
  outputImage = this->GetOutput();
  outputImage->SetRegions( inputImage->GetBufferedRegion() );
  this->AllocateOutputs();

  // Finally convert the cumulated image to the output by 
  // taking the square root of the pixels.
  ImageRegionIterator< OutputImageType > ot( 
    outputImage, 
    outputImage->GetRequestedRegion() );

  ImageRegionIterator< CumulativeImageType > it( 
    cumulativeImage, 
    cumulativeImage->GetRequestedRegion() );

  it.GoToBegin();
  ot.GoToBegin();
  while( !it.IsAtEnd() )
    {
    ot.Set( static_cast<OutputPixelType>( vcl_sqrt( it.Get() ) ) );
    ++it;
    ++ot;
    }
}



} // end namespace itk

#endif