1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGradientMagnitudeRecursiveGaussianImageFilter.txx,v $
Language: C++
Date: $Date: 2006-08-01 19:16:17 $
Version: $Revision: 1.18 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkGradientMagnitudeRecursiveGaussianImageFilter_txx
#define _itkGradientMagnitudeRecursiveGaussianImageFilter_txx
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
namespace itk
{
/**
* Constructor
*/
template <typename TInputImage, typename TOutputImage >
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GradientMagnitudeRecursiveGaussianImageFilter()
{
m_NormalizeAcrossScale = false;
m_DerivativeFilter = DerivativeFilterType::New();
m_DerivativeFilter->SetOrder( DerivativeFilterType::FirstOrder );
m_DerivativeFilter->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
m_DerivativeFilter->ReleaseDataFlagOn();
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ] = GaussianFilterType::New();
m_SmoothingFilters[ i ]->SetOrder( GaussianFilterType::ZeroOrder );
m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
m_SmoothingFilters[ i ]->ReleaseDataFlagOn();
}
m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
for( unsigned int i = 1; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetInput( m_SmoothingFilters[i-1]->GetOutput() );
}
this->SetSigma( 1.0 );
this->InPlaceOff();
}
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
}
/**
* Set value of Sigma
*/
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigma( RealType sigma )
{
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetSigma( sigma );
}
m_DerivativeFilter->SetSigma( sigma );
this->Modified();
}
/**
* Set Normalize Across Scale Space
*/
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNormalizeAcrossScale( bool normalize )
{
m_NormalizeAcrossScale = normalize;
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( normalize );
}
m_DerivativeFilter->SetNormalizeAcrossScale( normalize );
this->Modified();
}
//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// This filter needs all of the input
typename GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>::InputImagePointer image = const_cast<InputImageType *>( this->GetInput() );
if( image )
{
image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
}
}
//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
TOutputImage *out = dynamic_cast<TOutputImage*>(output);
if (out)
{
out->SetRequestedRegion( out->GetLargestPossibleRegion() );
}
}
/**
* Compute filter for Gaussian kernel
*/
template <typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter<TInputImage,TOutputImage >
::GenerateData(void)
{
itkDebugMacro(<< "GradientMagnitudeRecursiveGaussianImageFilter generating data ");
const typename TInputImage::ConstPointer inputImage( this->GetInput() );
typename TOutputImage::Pointer outputImage( this->GetOutput() );
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
typename CumulativeImageType::Pointer cumulativeImage = CumulativeImageType::New();
cumulativeImage->SetRegions( inputImage->GetBufferedRegion() );
cumulativeImage->Allocate();
cumulativeImage->FillBuffer( NumericTraits< InternalRealType >::Zero );
m_DerivativeFilter->SetInput( inputImage );
const unsigned int numberOfFilterRuns = ImageDimension * ImageDimension;
progress->RegisterInternalFilter(m_DerivativeFilter, 1.0f / numberOfFilterRuns );
for( unsigned int k=0; k < ImageDimension-1; k++ )
{
progress->RegisterInternalFilter( m_SmoothingFilters[k], 1.0f / numberOfFilterRuns );
}
for( unsigned int dim=0; dim < ImageDimension; dim++ )
{
unsigned int i=0;
unsigned int j=0;
while( i < ImageDimension-1 )
{
if( i == dim )
{
j++;
}
m_SmoothingFilters[ i ]->SetDirection( j );
i++;
j++;
}
m_DerivativeFilter->SetDirection( dim );
GaussianFilterPointer lastFilter = m_SmoothingFilters[ImageDimension-2];
lastFilter->Update();
progress->ResetFilterProgressAndKeepAccumulatedProgress();
// Cummulate the results on the output image
typename RealImageType::Pointer derivativeImage = lastFilter->GetOutput();
ImageRegionIterator< RealImageType > it(
derivativeImage,
derivativeImage->GetRequestedRegion() );
ImageRegionIterator< CumulativeImageType > ot(
cumulativeImage,
cumulativeImage->GetRequestedRegion() );
const RealType spacing = inputImage->GetSpacing()[ dim ];
it.GoToBegin();
ot.GoToBegin();
while( !it.IsAtEnd() )
{
ot.Value() += vnl_math_sqr( it.Get() / spacing );
++it;
++ot;
}
}
// Release the data on the last smoother since we have acculumated
// its data into our cumulative image.
m_SmoothingFilters[ImageDimension-2]->GetOutput()->ReleaseData();
// Now allocate the output image (postponed the allocation until
// after all the subfilters ran to minimize total memory footprint)
outputImage = this->GetOutput();
outputImage->SetRegions( inputImage->GetBufferedRegion() );
this->AllocateOutputs();
// Finally convert the cumulated image to the output by
// taking the square root of the pixels.
ImageRegionIterator< OutputImageType > ot(
outputImage,
outputImage->GetRequestedRegion() );
ImageRegionIterator< CumulativeImageType > it(
cumulativeImage,
cumulativeImage->GetRequestedRegion() );
it.GoToBegin();
ot.GoToBegin();
while( !it.IsAtEnd() )
{
ot.Set( static_cast<OutputPixelType>( vcl_sqrt( it.Get() ) ) );
++it;
++ot;
}
}
} // end namespace itk
#endif
|