File: itkGradientNDAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (151 lines) | stat: -rw-r--r-- 4,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGradientNDAnisotropicDiffusionFunction.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-18 20:07:32 $
  Version:   $Revision: 1.13 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGradientNDAnisotropicDiffusionFunction_txx_
#define __itkGradientNDAnisotropicDiffusionFunction_txx_

#include "itkNumericTraits.h"

namespace itk {

template<class TImage>
double GradientNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
  
template<class TImage>
GradientNDAnisotropicDiffusionFunction<TImage>
::GradientNDAnisotropicDiffusionFunction()
{
  unsigned int i, j;
  RadiusType r;

  for (i = 0; i < ImageDimension; ++i)
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood<PixelType, ImageDimension> it;
  it.SetRadius(r);
  
  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for (i = 0; i< ImageDimension; ++i)
    { m_Stride[i] = it.GetStride(i); }

  for (i = 0; i< ImageDimension; ++i)
    { x_slice[i]  = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]); }
  
  for (i = 0; i< ImageDimension; ++i)
    {
    for (j = 0; j < ImageDimension; ++j)
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j]
        = std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]); 
      xd_slice[i][j]
        = std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
      }
    }

  // Allocate the derivative operator.
  dx_op.SetDirection(0);  // Not relevant, will be applied in a slice-based
                          // fashion.
  dx_op.SetOrder(1);
  dx_op.CreateDirectional();
}

template<class TImage>
typename GradientNDAnisotropicDiffusionFunction<TImage>::PixelType
GradientNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *,
                const FloatOffsetType&)
{
  unsigned int i, j;

  double accum;
  double accum_d;
  double Cx;
  double Cxd;
  
  // PixelType is scalar in this context
  PixelRealType delta;
  PixelRealType dx_forward;
  PixelRealType dx_backward;
  PixelRealType dx[ImageDimension];
  PixelRealType dx_aug;
  PixelRealType dx_dim;

  delta = NumericTraits<PixelRealType>::Zero;
  
  // Calculate the centralized derivatives for each dimension.
  for (i = 0; i < ImageDimension; i++)
    {      dx[i]  =  (it.GetPixel(m_Center + m_Stride[i])-it.GetPixel(m_Center - m_Stride[i]))/2.0f;    }

  for (i = 0; i < ImageDimension; i++)
    {
    // ``Half'' directional derivatives
    dx_forward = it.GetPixel(m_Center + m_Stride[i])
      - it.GetPixel(m_Center);
    dx_backward =  it.GetPixel(m_Center)
      - it.GetPixel(m_Center - m_Stride[i]);      

    // Calculate the conductance terms.  Conductance varies with each
    // dimension because the gradient magnitude approximation is different
    // along each  dimension.      
    accum   = 0.0;
    accum_d = 0.0;
    for (j = 0; j < ImageDimension; j++)
      {
      if (j != i)
        {
        dx_aug = (it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]) -
                  it.GetPixel(m_Center + m_Stride[i] - m_Stride[j]) ) / 2.0f;
        dx_dim = (it.GetPixel(m_Center - m_Stride[i] + m_Stride[j]) -
                  it.GetPixel(m_Center - m_Stride[i] - m_Stride[j]) ) /2.0f;
        accum   += 0.25f * vnl_math_sqr( dx[j] + dx_aug );
        accum_d += 0.25f * vnl_math_sqr( dx[j] + dx_dim );
        }
      }
      
    if (m_K == 0.0)
      {       
      Cx = 0.0;
      Cxd = 0.0;
      }
    else
      {
      Cx = vcl_exp(( vnl_math_sqr( dx_forward ) + accum)  / m_K );
      Cxd= vcl_exp(( vnl_math_sqr( dx_backward) + accum_d)/ m_K );
      }

    // Conductance modified first order derivatives.
    dx_forward  = dx_forward * Cx;
    dx_backward = dx_backward * Cxd;

    // Conductance modified second order derivative.
    delta += dx_forward - dx_backward;
    }
  
  return static_cast<PixelType>(delta);
}

} // end namespace itk

#endif