File: itkGradientRecursiveGaussianImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (303 lines) | stat: -rw-r--r-- 8,296 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGradientRecursiveGaussianImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-02-04 12:34:11 $
  Version:   $Revision: 1.38 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGradientRecursiveGaussianImageFilter_txx
#define __itkGradientRecursiveGaussianImageFilter_txx

#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionIterator.h"

namespace itk
{


/**
 * Constructor
 */
template <typename TInputImage, typename TOutputImage >
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GradientRecursiveGaussianImageFilter()
{
  m_NormalizeAcrossScale = false;
  m_UseImageDirection = false;

  int imageDimensionMinus1 = static_cast<int>(ImageDimension)-1;
  if( ImageDimension > 1)
    {
    m_SmoothingFilters.resize(imageDimensionMinus1);
    }

  for( int i = 0; i<imageDimensionMinus1; i++ )
    {
    m_SmoothingFilters[ i ] = GaussianFilterType::New();
    m_SmoothingFilters[ i ]->SetOrder( GaussianFilterType::ZeroOrder );
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
    m_SmoothingFilters[ i ]->ReleaseDataFlagOn();
    }

  m_DerivativeFilter = DerivativeFilterType::New();
  m_DerivativeFilter->SetOrder( DerivativeFilterType::FirstOrder );
  m_DerivativeFilter->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
  
  m_DerivativeFilter->SetInput( this->GetInput() );

  if( ImageDimension > 1 )
    {
    m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
    }

  for( int i = 1; i<imageDimensionMinus1; i++ )
    {
    m_SmoothingFilters[ i ]->SetInput( 
      m_SmoothingFilters[i-1]->GetOutput() );
    }
  
  m_ImageAdaptor = OutputImageAdaptorType::New();

  this->SetSigma( 1.0 );

}


/**
 * Set value of Sigma
 */
template <typename TInputImage, typename TOutputImage>
void 
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigma( RealType sigma )
{

  int imageDimensionMinus1 = static_cast<int>(ImageDimension)-1;
  for( int i = 0; i<imageDimensionMinus1; i++ )
    {
    m_SmoothingFilters[ i ]->SetSigma( sigma );
    }
  m_DerivativeFilter->SetSigma( sigma );

  this->Modified();

}

/**
 * Set Normalize Across Scale Space
 */
template <typename TInputImage, typename TOutputImage>
void 
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNormalizeAcrossScale( bool normalize )
{

  m_NormalizeAcrossScale = normalize;

  int imageDimensionMinus1 = static_cast<int>(ImageDimension)-1;
  for( int i = 0; i<imageDimensionMinus1; i++ )
    {
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( normalize );
    }
  m_DerivativeFilter->SetNormalizeAcrossScale( normalize );

  this->Modified();

}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // This filter needs all of the input
  typename GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>::InputImagePointer image = const_cast<InputImageType *>( this->GetInput() );
  if( image )
    {
    image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
    }
}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
  TOutputImage *out = dynamic_cast<TOutputImage*>(output);

  if (out)
    {
    out->SetRequestedRegion( out->GetLargestPossibleRegion() );
    }
}

/**
 * Compute filter for Gaussian kernel
 */
template <typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage >
::GenerateData(void)
{
  // Create a process accumulator for tracking the progress of this
  // minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);
  
  // Compute the contribution of each filter to the total progress.
  const double weight = 1.0 / ( ImageDimension * ImageDimension );

  int imageDimensionMinus1 = static_cast<int>(ImageDimension)-1;
  for( int i = 0; i<imageDimensionMinus1; i++ )
    {
    progress->RegisterInternalFilter( m_SmoothingFilters[i], weight );
    }

  progress->RegisterInternalFilter( m_DerivativeFilter, weight );
  progress->ResetProgress();

  const typename TInputImage::ConstPointer   inputImage( this->GetInput() );

  m_ImageAdaptor->SetImage( this->GetOutput() );

  m_ImageAdaptor->SetLargestPossibleRegion( 
    inputImage->GetLargestPossibleRegion() );

  m_ImageAdaptor->SetBufferedRegion( 
    inputImage->GetBufferedRegion() );

  m_ImageAdaptor->SetRequestedRegion( 
    inputImage->GetRequestedRegion() );

  m_ImageAdaptor->Allocate();

  m_DerivativeFilter->SetInput( inputImage );

  for( int dim=0; dim < ImageDimension; dim++ )
    {
    int i=0; 
    int j=0;
    while(  i < imageDimensionMinus1 )
      {
      if( i == dim ) 
        {
        j++;
        }
      m_SmoothingFilters[ i ]->SetDirection( j );
      i++;
      j++;
      }
    m_DerivativeFilter->SetDirection( dim );
    
    GaussianFilterPointer lastFilter;

    if( ImageDimension > 1 ) 
      {
      int imageDimensionMinus2 = static_cast<int>(ImageDimension)-2;
      lastFilter = m_SmoothingFilters[imageDimensionMinus2];
      lastFilter->Update();
      }
    else
      {
      m_DerivativeFilter->Update();
      }

    progress->ResetFilterProgressAndKeepAccumulatedProgress();

    // Copy the results to the corresponding component
    // on the output image of vectors
    m_ImageAdaptor->SelectNthElement( dim );

    typename RealImageType::Pointer derivativeImage;
    if ( ImageDimension > 1)
      {
      derivativeImage = lastFilter->GetOutput(); 
      }
    else
      {
      derivativeImage = m_DerivativeFilter->GetOutput();
      }

    ImageRegionIteratorWithIndex< RealImageType > it( 
      derivativeImage, 
      derivativeImage->GetRequestedRegion() );

    ImageRegionIteratorWithIndex< OutputImageAdaptorType > ot( 
      m_ImageAdaptor, 
      m_ImageAdaptor->GetRequestedRegion() );
  
    const RealType spacing = inputImage->GetSpacing()[ dim ];

    it.GoToBegin();
    ot.GoToBegin();
    while( !it.IsAtEnd() )
      {
      ot.Set( it.Get() / spacing );
      ++it;
      ++ot;
      }

    }
  
#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
  // If the flag for using the input image direction is ON,
  // then we apply the direction correction to all the pixels
  // of the output gradient image.
  if( this->m_UseImageDirection )
    {
    OutputImageType * gradientImage = this->GetOutput();
    typedef typename InputImageType::DirectionType DirectionType;
    ImageRegionIterator< OutputImageType > itr( gradientImage,
      gradientImage->GetRequestedRegion() );

    OutputPixelType correctedGradient;
    while( !itr.IsAtEnd() )
      {
      const OutputPixelType & gradient = itr.Get();
      inputImage->TransformLocalVectorToPhysicalVector( gradient, correctedGradient );
      itr.Set( correctedGradient );
      ++itr;
      }
    }
#endif

}


template <typename TInputImage, typename TOutputImage>
void
GradientRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << indent << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
  os << indent << "UseImageDirection :   " 
     << (this->m_UseImageDirection ? "On" : "Off") << std::endl;
}


} // end namespace itk

#endif