1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGrayscaleConnectedClosingImageFilter.txx,v $
Language: C++
Date: $Date: 2006-12-15 21:40:37 $
Version: $Revision: 1.12 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGrayscaleConnectedClosingImageFilter_txx
#define __itkGrayscaleConnectedClosingImageFilter_txx
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkGrayscaleConnectedClosingImageFilter.h"
#include "itkReconstructionByErosionImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkProgressAccumulator.h"
namespace itk {
template <class TInputImage, class TOutputImage>
GrayscaleConnectedClosingImageFilter<TInputImage, TOutputImage>
::GrayscaleConnectedClosingImageFilter()
: m_NumberOfIterationsUsed( 1 )
{
m_Seed.Fill( NumericTraits<ITK_TYPENAME InputImageIndexType::OffsetValueType>::Zero );
m_FullyConnected = false;
}
template <class TInputImage, class TOutputImage>
void
GrayscaleConnectedClosingImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
if( input )
{
input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}
}
template <class TInputImage, class TOutputImage>
void
GrayscaleConnectedClosingImageFilter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}
template<class TInputImage, class TOutputImage>
void
GrayscaleConnectedClosingImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
// Allocate the output
this->AllocateOutputs();
// construct a marker image to manipulate using reconstruction by
// dilation. the marker image will have the same pixel values as the
// input image at the seed pixel and will have a minimum everywhere
// else.
//
// compute the minimum pixel value in the input
typename MinimumMaximumImageCalculator<TInputImage>::Pointer calculator
= MinimumMaximumImageCalculator<TInputImage>::New();
calculator->SetImage( this->GetInput() );
calculator->ComputeMaximum();
InputImagePixelType maxValue;
maxValue = calculator->GetMaximum();
// compare this maximum value to the value at the seed pixel.
InputImagePixelType seedValue;
seedValue = this->GetInput()->GetPixel( m_Seed );
if (maxValue == seedValue)
{
itkWarningMacro(<< "GrayscaleConnectedClosingImageFilter: pixel value at seed point matches maximum value in image. Resulting image will have a constant value.");
this->GetOutput()->FillBuffer( maxValue );
this->UpdateProgress(1.0);
return;
}
// allocate a marker image
InputImagePointer markerPtr = InputImageType::New();
markerPtr->SetRegions( this->GetInput()->GetRequestedRegion() );
markerPtr->CopyInformation( this->GetInput() );
markerPtr->Allocate();
// fill the marker image with the maximum value from the input
markerPtr->FillBuffer( maxValue );
// mark the seed point
markerPtr->SetPixel( m_Seed, seedValue );
// Delegate to a geodesic dilation filter.
//
//
typename ReconstructionByErosionImageFilter<TInputImage, TInputImage>::Pointer
erode
= ReconstructionByErosionImageFilter<TInputImage, TInputImage>::New();
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
progress->RegisterInternalFilter(erode,1.0f);
// set up the erode filter
//erode->RunOneIterationOff(); // run to convergence
erode->SetMarkerImage( markerPtr );
erode->SetMaskImage( this->GetInput() );
erode->SetFullyConnected( m_FullyConnected );
// graft our output to the erode filter to force the proper regions
// to be generated
erode->GraftOutput( this->GetOutput() );
// reconstruction by dilation
erode->Update();
// graft the output of the erode filter back onto this filter's
// output. this is needed to get the appropriate regions passed
// back.
this->GraftOutput( erode->GetOutput() );
}
template<class TInputImage, class TOutputImage>
void
GrayscaleConnectedClosingImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Seed point: " << m_Seed << std::endl;
os << indent << "Number of iterations used to produce current output: "
<< m_NumberOfIterationsUsed << std::endl;
os << indent << "FullyConnected: " << m_FullyConnected << std::endl;
}
}// end namespace itk
#endif
|