1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGrayscaleConnectedOpeningImageFilter.txx,v $
Language: C++
Date: $Date: 2006-12-15 21:40:38 $
Version: $Revision: 1.12 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGrayscaleConnectedOpeningImageFilter_txx
#define __itkGrayscaleConnectedOpeningImageFilter_txx
#include "itkNumericTraits.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkGrayscaleConnectedOpeningImageFilter.h"
#include "itkReconstructionByDilationImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkProgressAccumulator.h"
namespace itk {
template <class TInputImage, class TOutputImage>
GrayscaleConnectedOpeningImageFilter<TInputImage, TOutputImage>
::GrayscaleConnectedOpeningImageFilter()
: m_NumberOfIterationsUsed( 1 )
{
m_Seed.Fill( NumericTraits<ITK_TYPENAME InputImageIndexType::OffsetValueType>::Zero );
m_FullyConnected = false;
}
template <class TInputImage, class TOutputImage>
void
GrayscaleConnectedOpeningImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
if( input )
{
input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}
}
template <class TInputImage, class TOutputImage>
void
GrayscaleConnectedOpeningImageFilter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}
template<class TInputImage, class TOutputImage>
void
GrayscaleConnectedOpeningImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
// Allocate the output
this->AllocateOutputs();
// construct a marker image to manipulate using reconstruction by
// dilation. the marker image will have the same pixel values as the
// input image at the seed pixel and will have a minimum everywhere
// else.
//
// compute the minimum pixel value in the input
typename MinimumMaximumImageCalculator<TInputImage>::Pointer calculator
= MinimumMaximumImageCalculator<TInputImage>::New();
calculator->SetImage( this->GetInput() );
calculator->ComputeMinimum();
InputImagePixelType minValue;
minValue = calculator->GetMinimum();
// compare this minimum value to the value at the seed pixel.
InputImagePixelType seedValue;
seedValue = this->GetInput()->GetPixel( m_Seed );
if (minValue == seedValue)
{
itkWarningMacro(<< "GrayscaleConnectedClosingImageFilter: pixel value at seed point matches minimum value in image. Resulting image will have a constant value.");
this->GetOutput()->FillBuffer( minValue );
return;
}
// allocate a marker image
InputImagePointer markerPtr = InputImageType::New();
markerPtr->SetRegions( this->GetInput()->GetRequestedRegion() );
markerPtr->CopyInformation( this->GetInput() );
markerPtr->Allocate();
// fill the marker image with the maximum value from the input
markerPtr->FillBuffer( minValue );
// mark the seed point
markerPtr->SetPixel( m_Seed, seedValue );
// Delegate to a geodesic dilation filter.
//
//
typename ReconstructionByDilationImageFilter<TInputImage, TInputImage>::Pointer
dilate
= ReconstructionByDilationImageFilter<TInputImage, TInputImage>::New();
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
progress->RegisterInternalFilter(dilate,1.0f);
// set up the dilate filter
//dilate->RunOneIterationOff(); // run to convergence
dilate->SetMarkerImage( markerPtr );
dilate->SetMaskImage( this->GetInput() );
dilate->SetFullyConnected( m_FullyConnected );
// graft our output to the dilate filter to force the proper regions
// to be generated
dilate->GraftOutput( this->GetOutput() );
// reconstruction by dilation
dilate->Update();
// graft the output of the dilate filter back onto this filter's
// output. this is needed to get the appropriate regions passed
// back.
this->GraftOutput( dilate->GetOutput() );
}
template<class TInputImage, class TOutputImage>
void
GrayscaleConnectedOpeningImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Seed point: " << m_Seed << std::endl;
os << indent << "Number of iterations used to produce current output: "
<< m_NumberOfIterationsUsed << std::endl;
os << indent << "FullyConnected: " << m_FullyConnected << std::endl;
}
}// end namespace itk
#endif
|