File: itkGrayscaleFillholeImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (165 lines) | stat: -rw-r--r-- 5,435 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGrayscaleFillholeImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2006-12-15 21:41:24 $
  Version:   $Revision: 1.10 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGrayscaleFillholeImageFilter_txx
#define __itkGrayscaleFillholeImageFilter_txx

#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkGrayscaleFillholeImageFilter.h"
#include "itkReconstructionByErosionImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkImageRegionExclusionConstIteratorWithIndex.h"
#include "itkImageRegionExclusionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"

namespace itk {

template <class TInputImage, class TOutputImage>
GrayscaleFillholeImageFilter<TInputImage, TOutputImage>
::GrayscaleFillholeImageFilter()
  : m_NumberOfIterationsUsed( 1 )
{
  m_FullyConnected = false;
}

template <class TInputImage, class TOutputImage>
void 
GrayscaleFillholeImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // We need all the input.
  InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
  if( input )
    {
    input->SetRequestedRegion( input->GetLargestPossibleRegion() );
    }
}


template <class TInputImage, class TOutputImage>
void 
GrayscaleFillholeImageFilter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
    ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}


template<class TInputImage, class TOutputImage>
void
GrayscaleFillholeImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
  // Allocate the output
  this->AllocateOutputs();
  
  // construct a marker image to manipulate using reconstruction by
  // erosion. the marker image will have the same pixel values as the
  // input image on the boundary of the image and will have the
  // maximum pixel value from the input image for all the pixels in
  // the interior
  //

  // compute the maximum pixel value in the input
  typename MinimumMaximumImageCalculator<TInputImage>::Pointer calculator
    = MinimumMaximumImageCalculator<TInputImage>::New();
  calculator->SetImage( this->GetInput() );
  calculator->ComputeMaximum();

  InputImagePixelType maxValue;
  maxValue = calculator->GetMaximum();

  // allocate a marker image
  InputImagePointer markerPtr = InputImageType::New();
  markerPtr->SetRegions( this->GetInput()->GetRequestedRegion() );
  markerPtr->CopyInformation( this->GetInput() );
  markerPtr->Allocate();

  // fill the marker image with the maximum value from the input
  markerPtr->FillBuffer( maxValue );

  // copy the borders of the input image to the marker image
  //
  ImageRegionExclusionConstIteratorWithIndex<TInputImage>
    inputBoundaryIt( this->GetInput(), this->GetInput()->GetRequestedRegion());
  inputBoundaryIt.SetExclusionRegionToInsetRegion();

  ImageRegionExclusionIteratorWithIndex<TInputImage>
    markerBoundaryIt( markerPtr, this->GetInput()->GetRequestedRegion() );
  markerBoundaryIt.SetExclusionRegionToInsetRegion();

  // copy the boundary pixels
  inputBoundaryIt.GoToBegin();
  markerBoundaryIt.GoToBegin();
  while ( !inputBoundaryIt.IsAtEnd() )
    {
    markerBoundaryIt.Set( inputBoundaryIt.Get() );
    ++markerBoundaryIt;
    ++inputBoundaryIt;
    }
    
  
  // Delegate to a geodesic erosion filter.
  //
  //
  typename ReconstructionByErosionImageFilter<TInputImage, TInputImage>::Pointer
    erode
    = ReconstructionByErosionImageFilter<TInputImage, TInputImage>::New();

  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);
  progress->RegisterInternalFilter(erode,1.0f);

  // set up the erode filter
  //erode->RunOneIterationOff();             // run to convergence
  erode->SetMarkerImage( markerPtr );
  erode->SetMaskImage( this->GetInput() );
  erode->SetFullyConnected( m_FullyConnected );

  // graft our output to the erode filter to force the proper regions
  // to be generated
  erode->GraftOutput( this->GetOutput() );

  // reconstruction by erosion
  erode->Update();

  // graft the output of the erode filter back onto this filter's
  // output. this is needed to get the appropriate regions passed
  // back.
  this->GraftOutput( erode->GetOutput() );
}


template<class TInputImage, class TOutputImage>
void
GrayscaleFillholeImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Number of iterations used to produce current output: "
     << m_NumberOfIterationsUsed << std::endl;
  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
}
  
}// end namespace itk
#endif