1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkHessian3DToVesselnessMeasureImageFilter.txx,v $
Language: C++
Date: $Date: 2008-01-19 19:50:01 $
Version: $Revision: 1.6 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkHessian3DToVesselnessMeasureImageFilter_txx
#define _itkHessian3DToVesselnessMeasureImageFilter_txx
#include "itkHessian3DToVesselnessMeasureImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "vnl/vnl_math.h"
namespace itk
{
/**
* Constructor
*/
template < typename TPixel >
Hessian3DToVesselnessMeasureImageFilter< TPixel >
::Hessian3DToVesselnessMeasureImageFilter()
{
m_Alpha1 = 0.5;
m_Alpha2 = 2.0;
// Hessian( Image ) = Jacobian( Gradient ( Image ) ) is symmetric
m_SymmetricEigenValueFilter = EigenAnalysisFilterType::New();
m_SymmetricEigenValueFilter->SetDimension( ImageDimension );
m_SymmetricEigenValueFilter->OrderEigenValuesBy(
EigenAnalysisFilterType::FunctorType::OrderByValue );
}
template < typename TPixel >
void
Hessian3DToVesselnessMeasureImageFilter< TPixel >
::GenerateData()
{
itkDebugMacro(<< "Hessian3DToVesselnessMeasureImageFilter generating data ");
m_SymmetricEigenValueFilter->SetInput( this->GetInput() );
typename OutputImageType::Pointer output = this->GetOutput();
typedef typename EigenAnalysisFilterType::OutputImageType
EigenValueOutputImageType;
m_SymmetricEigenValueFilter->Update();
const typename EigenValueOutputImageType::ConstPointer eigenImage =
m_SymmetricEigenValueFilter->GetOutput();
// walk the region of eigen values and get the vesselness measure
EigenValueArrayType eigenValue;
ImageRegionConstIterator<EigenValueOutputImageType> it;
it = ImageRegionConstIterator<EigenValueOutputImageType>(
eigenImage, eigenImage->GetRequestedRegion());
ImageRegionIterator<OutputImageType> oit;
this->AllocateOutputs();
oit = ImageRegionIterator<OutputImageType>(output,
output->GetRequestedRegion());
oit.GoToBegin();
it.GoToBegin();
while (!it.IsAtEnd())
{
// Get the eigen value
eigenValue = it.Get();
// normalizeValue <= 0 for bright line structures
double normalizeValue = vnl_math_min( -1.0 * eigenValue[1], -1.0 * eigenValue[0]);
// Similarity measure to a line structure
if( normalizeValue > 0 )
{
double lineMeasure;
if( eigenValue[2] <= 0 )
{
lineMeasure =
vcl_exp(-0.5 * vnl_math_sqr( eigenValue[2] / (m_Alpha1 * normalizeValue)));
}
else
{
lineMeasure =
vcl_exp(-0.5 * vnl_math_sqr( eigenValue[2] / (m_Alpha2 * normalizeValue)));
}
lineMeasure *= normalizeValue;
oit.Set( static_cast< OutputPixelType >(lineMeasure) );
}
else
{
oit.Set( NumericTraits< OutputPixelType >::Zero );
}
++it;
++oit;
}
}
template < typename TPixel >
void
Hessian3DToVesselnessMeasureImageFilter< TPixel >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Alpha1: " << m_Alpha1 << std::endl;
os << indent << "Alpha2: " << m_Alpha2 << std::endl;
}
} // end namespace itk
#endif
|