File: itkIsolatedConnectedImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (316 lines) | stat: -rw-r--r-- 11,239 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkIsolatedConnectedImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2006-03-19 04:36:56 $
  Version:   $Revision: 1.27 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkIsolatedConnectedImageFilter_txx_
#define __itkIsolatedConnectedImageFilter_txx_

#include "itkIsolatedConnectedImageFilter.h"
#include "itkBinaryThresholdImageFunction.h"
#include "itkFloodFilledImageFunctionConditionalIterator.h"
#include "itkProgressReporter.h"
#include "itkIterationReporter.h"

namespace itk
{

/**
 * Constructor
 */
template <class TInputImage, class TOutputImage>
IsolatedConnectedImageFilter<TInputImage, TOutputImage>
::IsolatedConnectedImageFilter()
{
  m_Lower = NumericTraits<InputImagePixelType>::NonpositiveMin();
  m_Upper = NumericTraits<InputImagePixelType>::max();
  m_Seeds1.clear();
  m_Seeds2.clear();
  m_ReplaceValue = NumericTraits<OutputImagePixelType>::One;
  m_IsolatedValue = NumericTraits<InputImagePixelType >::Zero;
  m_IsolatedValueTolerance = NumericTraits<InputImagePixelType >::One;
  m_FindUpperThreshold = true;
  m_ThresholdingFailed = false;
}

/**
 * Standard PrintSelf method.
 */
template <class TInputImage, class TOutputImage>
void
IsolatedConnectedImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "Lower: "
     << static_cast<typename NumericTraits<InputImagePixelType>::PrintType>(m_Lower)
     << std::endl;
  os << indent << "Upper: "
     << static_cast<typename NumericTraits<InputImagePixelType>::PrintType>(m_Upper)
     << std::endl;
  os << indent << "ReplaceValue: "
     << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ReplaceValue)
     << std::endl;
  os << indent << "IsolatedValue: "
     << static_cast<typename NumericTraits<InputImagePixelType>::PrintType>(m_IsolatedValue)
     << std::endl;
  os << indent << "IsolatedValueTolerance: "
     << static_cast<typename NumericTraits<InputImagePixelType>::PrintType>(m_IsolatedValueTolerance)
     << std::endl;
  os << indent << "FindUpperThreshold: "
     << static_cast<typename NumericTraits<bool>::PrintType>(m_FindUpperThreshold)
     << std::endl;
  os << indent << "Thresholding Failed: "
     << static_cast<typename NumericTraits<bool>::PrintType>(m_ThresholdingFailed)
     << std::endl;
}

template <class TInputImage, class TOutputImage>
void 
IsolatedConnectedImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion()
{
  Superclass::GenerateInputRequestedRegion();
  if ( this->GetInput() )
    {
    InputImagePointer image = 
      const_cast< TInputImage * >( this->GetInput() );
    image->SetRequestedRegionToLargestPossibleRegion();
    }
}

template <class TInputImage, class TOutputImage>
void 
IsolatedConnectedImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
  Superclass::EnlargeOutputRequestedRegion(output);
  output->SetRequestedRegionToLargestPossibleRegion();
}

template <class TInputImage, class TOutputImage>
void 
IsolatedConnectedImageFilter<TInputImage,TOutputImage>
::GenerateData()
{
  InputImageConstPointer inputImage = this->GetInput();
  OutputImagePointer outputImage = this->GetOutput();
  typedef typename NumericTraits<InputImagePixelType>::AccumulateType AccumulateType;

  // Zero the output
  OutputImageRegionType region = outputImage->GetRequestedRegion() ;
  outputImage->SetBufferedRegion( region );
  outputImage->Allocate();
  outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
  
  typedef BinaryThresholdImageFunction<InputImageType> FunctionType;
  typedef FloodFilledImageFunctionConditionalIterator<OutputImageType, FunctionType> IteratorType;

  typename FunctionType::Pointer function = FunctionType::New();
  function->SetInputImage ( inputImage );

  float progressWeight;
  float cumulatedProgress;
  IteratorType it = IteratorType ( outputImage, function, m_Seeds1 );
  IterationReporter iterate( this, 0, 1);

  // If the upper threshold has not been set, find it.
  if (m_FindUpperThreshold)
    {
    AccumulateType lower = static_cast<AccumulateType>(m_Lower);
    AccumulateType upper = static_cast<AccumulateType>(m_Upper);
    AccumulateType guess = upper;

    // do a binary search to find an upper threshold that separates the
    // two sets of seeds.
    const unsigned int maximumIterationsInBinarySearch = 
      static_cast< unsigned int > (
        vcl_log(( static_cast<float>( upper ) - static_cast< float >( lower ) ) /
             static_cast<float>( m_IsolatedValueTolerance ) )  / vcl_log(2.0 ) );

    progressWeight = 1.0f / static_cast<float>( maximumIterationsInBinarySearch + 2 );
    cumulatedProgress = 0.0f;

    while (lower + m_IsolatedValueTolerance < guess)
      {
      ProgressReporter progress( this, 0, region.GetNumberOfPixels(), 100, cumulatedProgress, progressWeight );
      cumulatedProgress += progressWeight;
      outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
      function->ThresholdBetween ( m_Lower, static_cast<InputImagePixelType>(guess));
      it.GoToBegin();
      while( !it.IsAtEnd())
        {
        it.Set(m_ReplaceValue);
        if (it.GetIndex() == *m_Seeds2.begin())
          {
          break;
          }
        ++it;
        progress.CompletedPixel(); // potential exception thrown here
        }
      // If any of second seeds are included, decrease the upper bound.
      // Find the sum of the intensities in m_Seeds2.  If the second
      // seeds are not included, the sum should be zero.  Otherwise,
      // it will be other than zero.
      InputRealType seedIntensitySum = 0;
      typename SeedsContainerType::const_iterator si = m_Seeds2.begin();
      typename SeedsContainerType::const_iterator li = m_Seeds2.end();
      while( si != li )
        {
        const InputRealType value = 
          static_cast< InputRealType >( outputImage->GetPixel( *si ) );
        seedIntensitySum += value;
        si++;
        }

      if (seedIntensitySum != 0)
        {
        upper = guess;
        }
      // Otherwise, increase the lower bound.
      else
        {
        lower = guess;
        }
      guess = (upper + lower) /2;
      iterate.CompletedStep();
      }

    m_IsolatedValue = static_cast<InputImagePixelType>(lower); //the lower bound on the upper threshold guess
    }


  // If the lower threshold has not been set, find it.
  else if (!m_FindUpperThreshold)
    {
    AccumulateType lower = static_cast<AccumulateType>(m_Lower);
    AccumulateType upper = static_cast<AccumulateType>(m_Upper);
    AccumulateType guess = lower;

    // do a binary search to find a lower threshold that separates the
    // two sets of seeds.
    const unsigned int maximumIterationsInBinarySearch = 
      static_cast< unsigned int > (
        vcl_log(( static_cast<float>( upper ) - static_cast< float >( lower ) ) /
             static_cast<float>( m_IsolatedValueTolerance ) )  / vcl_log(2.0 ) );

    progressWeight = 1.0f / static_cast<float>( maximumIterationsInBinarySearch + 2 );
    cumulatedProgress = 0.0f;

    while (guess < upper - m_IsolatedValueTolerance)
      {
      ProgressReporter progress( this, 0, region.GetNumberOfPixels(), 100, cumulatedProgress, progressWeight );
      cumulatedProgress += progressWeight;
      outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
      function->ThresholdBetween ( static_cast<InputImagePixelType>(guess), m_Upper );
      it.GoToBegin();
      while( !it.IsAtEnd())
        {
        it.Set(m_ReplaceValue);
        if (it.GetIndex() == *m_Seeds2.begin())
          {
          break;
          }
        ++it;
        progress.CompletedPixel(); // potential exception thrown here
        }
      // If any of second seeds are included, increase the lower bound.
      // Find the sum of the intensities in m_Seeds2.  If the second
      // seeds are not included, the sum should be zero.  Otherwise,
      // it will be other than zero.
      InputRealType seedIntensitySum = 0;
      typename SeedsContainerType::const_iterator si = m_Seeds2.begin();
      typename SeedsContainerType::const_iterator li = m_Seeds2.end();
      while( si != li )
        {
        const InputRealType value = 
          static_cast< InputRealType >( outputImage->GetPixel( *si ) );
        seedIntensitySum += value;
        si++;
        }

      if (seedIntensitySum != 0)
        {
        lower = guess;
        }
      // Otherwise, decrease the upper bound.
      else
        {
        upper = guess;
        }
      guess = (upper + lower) /2;
      iterate.CompletedStep();
      }

    m_IsolatedValue = static_cast<InputImagePixelType>(upper); //the upper bound on the lower threshold guess
    }

  // now rerun the algorithm with the thresholds that separate the seeds.
  ProgressReporter progress( this, 0, region.GetNumberOfPixels(), 100, cumulatedProgress, progressWeight );

  outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
  if (m_FindUpperThreshold)
    {
    function->ThresholdBetween ( m_Lower, m_IsolatedValue);
    }
  else if (!m_FindUpperThreshold)
    {
    function->ThresholdBetween ( m_IsolatedValue, m_Upper);
    }
  it.GoToBegin();
  while( !it.IsAtEnd())
    {
    it.Set(m_ReplaceValue);
    ++it;
    progress.CompletedPixel(); // potential exception thrown here
    }

  // If any of the second seeds are included or some of the first
  // seeds are not included, the algorithm could not find any threshold
  // that would separate the two sets of seeds.  Set an error flag in
  // this case.

  // Find the sum of the intensities in m_Seeds2.  If the second
  // seeds are not included, the sum should be zero.  Otherwise,
  // it will be other than zero.
  InputRealType seed1IntensitySum = 0;
  InputRealType seed2IntensitySum = 0;
  typename SeedsContainerType::const_iterator si1 = m_Seeds1.begin();
  typename SeedsContainerType::const_iterator li1 = m_Seeds1.end();
  while( si1 != li1 )
    {
    const InputRealType value = 
      static_cast< InputRealType >( outputImage->GetPixel( *si1 ) );
    seed1IntensitySum += value;
    si1++;
    }
  typename SeedsContainerType::const_iterator si2 = m_Seeds2.begin();
  typename SeedsContainerType::const_iterator li2 = m_Seeds2.end();
  while( si2 != li2 )
    {
    const InputRealType value = 
      static_cast< InputRealType >( outputImage->GetPixel( *si2 ) );
    seed2IntensitySum += value;
    si2++;
    }
  if (seed1IntensitySum != m_ReplaceValue*m_Seeds1.size() || seed2IntensitySum != 0) 
    {
    m_ThresholdingFailed = true;
    }
  iterate.CompletedStep();
}

} // end namespace itk

#endif