File: itkLabelStatisticsImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (350 lines) | stat: -rw-r--r-- 12,213 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkLabelStatisticsImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2006-03-29 14:53:40 $
  Version:   $Revision: 1.9 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkLabelStatisticsImageFilter_h
#define __itkLabelStatisticsImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkNumericTraits.h"
#include "itkArray.h"
#include "itkSimpleDataObjectDecorator.h"
#include "itk_hash_map.h"
#include "itkHistogram.h"
#include "itkFastMutexLock.h"
#include <vector>

namespace itk {

/** \class LabelStatisticsImageFilter 
 * \brief Given an intensity image and a label map, compute min, max, variance and mean of the pixels associated with each label or segment
 *
 * LabelStatisticsImageFilter computes the minimum, maximum, sum,
 * mean, median, variance and sigma of regions of an intensity image, where
 * the regions are defined via a label map (a second input).  The
 * label image should be integral type. The filter needs all of its
 * input image.  It behaves as a filter with an input and output. Thus
 * it can be inserted in a pipline with other filters and the
 * statistics will only be recomputed if a downstream filter changes.
 *
 * Optionally, the filter also computes intensity histograms on each
 * object. If histograms are enabled, a median intensity value can
 * also be computed, although its accuracy is limited to the bin width
 * of the histogram. If histograms are not enabled, the median returns
 * zero.
 *
 * The filter passes its intensity input through unmodified.  The filter is
 * threaded. It computes statistics in each thread then combines them in
 * its AfterThreadedGenerate method.
 *
 * \ingroup MathematicalStatisticsImageFilters
 */
template<class TInputImage, class TLabelImage>
class ITK_EXPORT LabelStatisticsImageFilter : 
    public ImageToImageFilter<TInputImage, TInputImage>
{
public:
  /** Standard Self typedef */
  typedef LabelStatisticsImageFilter Self;
  typedef ImageToImageFilter<TInputImage,TInputImage>  Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self>  ConstPointer;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);  

  /** Runtime information support. */
  itkTypeMacro(LabelStatisticsImageFilter, ImageToImageFilter);
  
  /** Image related typedefs. */
  typedef typename TInputImage::Pointer InputImagePointer;
  typedef typename TInputImage::RegionType RegionType ;
  typedef typename TInputImage::SizeType SizeType ;
  typedef typename TInputImage::IndexType IndexType ;
  typedef typename TInputImage::PixelType PixelType ;

  /** Label image related typedefs. */
  typedef TLabelImage LabelImageType;
  typedef typename TLabelImage::Pointer LabelImagePointer;
  typedef typename TLabelImage::RegionType LabelRegionType ;
  typedef typename TLabelImage::SizeType LabelSizeType ;
  typedef typename TLabelImage::IndexType LabelIndexType ;
  typedef typename TLabelImage::PixelType LabelPixelType ;
  
  /** Image related typedefs. */
  itkStaticConstMacro(ImageDimension, unsigned int,
        TInputImage::ImageDimension ) ;

  /** Type to use for computations. */
  typedef typename NumericTraits<PixelType>::RealType RealType;

  /** Smart Pointer type to a DataObject. */
  typedef typename DataObject::Pointer DataObjectPointer;

  /** Type of DataObjects used for scalar outputs */
  typedef SimpleDataObjectDecorator<RealType> RealObjectType;

  /** Bounding Box-related typedefs */
  typedef std::vector<typename IndexType::IndexValueType> BoundingBoxType;

  /** Histogram-related typedefs */
  typedef itk::Statistics::Histogram<RealType,1> HistogramType;
  typedef typename HistogramType::Pointer HistogramPointer;

  /** Statistics stored per label */
  class LabelStatistics
  {
  public:

    // default constructor
    LabelStatistics()
      {
      // initialized to the default values
      m_Count = 0;
      m_Sum = NumericTraits<RealType>::Zero;
      m_SumOfSquares = NumericTraits<RealType>::Zero;
      
      // Set such that the first pixel encountered can be compared
      m_Minimum = NumericTraits<RealType>::max();
      m_Maximum = NumericTraits<RealType>::NonpositiveMin();
      
      // Default these to zero
      m_Mean = NumericTraits<RealType>::Zero;
      m_Sigma = NumericTraits<RealType>::Zero;
      m_Variance = NumericTraits<RealType>::Zero;

      unsigned int imageDimension = itkGetStaticConstMacro(ImageDimension);
      m_BoundingBox.resize(imageDimension*2);
        for (unsigned int i = 0; i < imageDimension * 2; i += 2)
          {
          m_BoundingBox[i] = NumericTraits<ITK_TYPENAME IndexType::IndexValueType>::max();
          m_BoundingBox[i+1] = NumericTraits<ITK_TYPENAME IndexType::IndexValueType>::NonpositiveMin();
          }
      m_Histogram = 0;

      }

      // constructor with histogram enabled
      LabelStatistics(int size, RealType lowerBound, RealType upperBound)
        {
        
        // initialized to the default values
        m_Count = 0;
        m_Sum = NumericTraits<RealType>::Zero;
        m_SumOfSquares = NumericTraits<RealType>::Zero;

        // Set such that the first pixel encountered can be compared
        m_Minimum = NumericTraits<RealType>::max();
        m_Maximum = NumericTraits<RealType>::NonpositiveMin();

        // Default these to zero
        m_Mean = NumericTraits<RealType>::Zero;
        m_Sigma = NumericTraits<RealType>::Zero;
        m_Variance = NumericTraits<RealType>::Zero;

        unsigned int imageDimension = itkGetStaticConstMacro(ImageDimension);
        m_BoundingBox.resize(imageDimension*2);
        for (unsigned int i = 0; i < imageDimension * 2; i += 2)
          {
          m_BoundingBox[i] = NumericTraits<ITK_TYPENAME IndexType::IndexValueType>::max();
          m_BoundingBox[i+1] = NumericTraits<ITK_TYPENAME IndexType::IndexValueType>::NonpositiveMin();
          }

       // Histogram
        m_Histogram = HistogramType::New();
        typename HistogramType::SizeType hsize;
        hsize[0] = size;
        typename HistogramType::MeasurementVectorType lb;
        lb[0] = lowerBound;
        typename HistogramType::MeasurementVectorType ub;
        ub[0] = upperBound;
        m_Histogram->Initialize(hsize, lb, ub);
        }

      // need copy constructor because of smart pointer to histogram
      LabelStatistics(const LabelStatistics& l)
        {
        m_Count = l.m_Count;
        m_Minimum = l.m_Minimum;
        m_Maximum = l.m_Maximum;
        m_Mean = l.m_Mean;
        m_Sum = l.m_Sum;
        m_SumOfSquares = l.m_SumOfSquares;
        m_Sigma = l.m_Sigma;
        m_Variance = l.m_Variance;
        m_BoundingBox = l.m_BoundingBox;
        m_Histogram = l.m_Histogram;
        }

    // added for completeness
      LabelStatistics& operator= (const LabelStatistics& l)
        {
        m_Count = l.m_Count;
        m_Minimum = l.m_Minimum;
        m_Maximum = l.m_Maximum;
        m_Mean = l.m_Mean;
        m_Sum = l.m_Sum;
        m_SumOfSquares = l.m_SumOfSquares;
        m_Sigma = l.m_Sigma;
        m_Variance = l.m_Variance;
        m_BoundingBox = l.m_BoundingBox;
        m_Histogram = l.m_Histogram;
        }
      
      unsigned long m_Count;
      RealType m_Minimum;
      RealType m_Maximum;
      RealType m_Mean;
      RealType m_Sum;
      RealType m_SumOfSquares;
      RealType m_Sigma;
      RealType m_Variance;
      BoundingBoxType m_BoundingBox;
      typename HistogramType::Pointer m_Histogram;
  };
  
  /** Type of the map used to store data per label */
  typedef itk::hash_map<LabelPixelType, LabelStatistics> MapType;
  typedef typename itk::hash_map<LabelPixelType, LabelStatistics>::iterator MapIterator;
  typedef typename itk::hash_map<LabelPixelType, LabelStatistics>::const_iterator MapConstIterator;

  // macros for Histogram enables
  itkSetMacro(UseHistograms, bool);
  itkGetMacro(UseHistograms, bool);
  itkBooleanMacro(UseHistograms);
  
  /** Set the label image */
  void SetLabelInput(TLabelImage *input)
    {
      // Process object is not const-correct so the const casting is required.
      this->SetNthInput(1, const_cast<TLabelImage *>(input) );
    }

  /** Get the label image */
  LabelImageType * GetLabelInput()
    {
      return static_cast<LabelImageType*>(const_cast<DataObject *>(this->ProcessObject::GetInput(1)));
    }

  /** Does the specified label exist? Can only be called after a call
   * a call to Update(). */
  bool HasLabel(LabelPixelType label) const
    {
      return m_LabelStatistics.find(label) != m_LabelStatistics.end();
    }

  /** Get the number of labels used */
  unsigned long GetNumberOfObjects() const
    {
      return m_LabelStatistics.size();
    }
  unsigned long GetNumberOfLabels() const
    {
      return this->GetNumberOfObjects();
    }

  
  /** Return the computed Minimum for a label. */
  RealType GetMinimum(LabelPixelType label) const;

  /** Return the computed Maximum for a label. */
  RealType GetMaximum(LabelPixelType label) const;

  /** Return the computed Mean for a label. */
  RealType GetMean(LabelPixelType label) const;

  /** Return the computed Median for a label. Requires histograms to be enabled! */
  RealType GetMedian(LabelPixelType label) const;

  /** Return the computed Standard Deviation for a label. */
  RealType GetSigma(LabelPixelType label) const;

  /** Return the computed Variance for a label. */
  RealType GetVariance(LabelPixelType label) const;

  /** Return the computed bounding box for a label. */
  BoundingBoxType GetBoundingBox(LabelPixelType label) const;

  /** Return the computed region. */
  RegionType GetRegion(LabelPixelType label) const;

  /** Return the compute Sum for a label. */
  RealType GetSum(LabelPixelType label) const;

  /** Return the number of pixels for a label. */
  unsigned long GetCount(LabelPixelType label) const;

  /** Return the histogram for a label */
  HistogramPointer GetHistogram(LabelPixelType label) const;

  /** specify Histogram parameters  */
  void SetHistogramParameters(const int numBins, RealType lowerBound,
    RealType upperBound) ;

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(InputHasNumericTraitsCheck,
                  (Concept::HasNumericTraits<PixelType>));
  /** End concept checking */
#endif

protected:
  LabelStatisticsImageFilter();
  ~LabelStatisticsImageFilter(){};
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Pass the input through unmodified. Do this by Grafting in the AllocateOutputs method. */
  void AllocateOutputs();      

  /** Initialize some accumulators before the threads run. */
  void BeforeThreadedGenerateData ();
  
  /** Do final mean and variance computation from data accumulated in threads. */
  void AfterThreadedGenerateData ();
  
  /** Multi-thread version GenerateData. */
  void  ThreadedGenerateData (const RegionType& 
         outputRegionForThread,
         int threadId) ;

  // Override since the filter needs all the data for the algorithm
  void GenerateInputRequestedRegion();

  // Override since the filter produces all of its output
  void EnlargeOutputRequestedRegion(DataObject *data);


private:
  LabelStatisticsImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  std::vector<MapType>  m_LabelStatisticsPerThread;
  MapType        m_LabelStatistics;

  bool m_UseHistograms;
  typename HistogramType::SizeType  m_NumBins;
  RealType m_LowerBound;
  RealType m_UpperBound;
  SimpleFastMutexLock m_Mutex;

} ; // end of class

} // end namespace itk
  
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkLabelStatisticsImageFilter.txx"
#endif

#endif