1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMedianImageFilter.txx,v $
Language: C++
Date: $Date: 2006-01-11 19:43:31 $
Version: $Revision: 1.18 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkMedianImageFilter_txx
#define _itkMedianImageFilter_txx
#include "itkMedianImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkOffset.h"
#include "itkProgressReporter.h"
#include <vector>
#include <algorithm>
namespace itk
{
template <class TInputImage, class TOutputImage>
MedianImageFilter<TInputImage, TOutputImage>
::MedianImageFilter()
{
m_Radius.Fill(1);
}
template <class TInputImage, class TOutputImage>
void
MedianImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion() throw (InvalidRequestedRegionError)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
typename Superclass::InputImagePointer inputPtr =
const_cast< TInputImage * >( this->GetInput() );
typename Superclass::OutputImagePointer outputPtr = this->GetOutput();
if ( !inputPtr || !outputPtr )
{
return;
}
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( m_Radius );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
{
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion( inputRequestedRegion );
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template< class TInputImage, class TOutputImage>
void
MedianImageFilter< TInputImage, TOutputImage>
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
int threadId)
{
// Allocate output
typename OutputImageType::Pointer output = this->GetOutput();
typename InputImageType::ConstPointer input = this->GetInput();
// Find the data-set boundary "faces"
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType> bC;
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::FaceListType
faceList = bC(input, outputRegionForThread, m_Radius);
// support progress methods/callbacks
ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());
// All of our neighborhoods have an odd number of pixels, so there is
// always a median index (if there where an even number of pixels
// in the neighborhood we have to average the middle two values).
ZeroFluxNeumannBoundaryCondition<InputImageType> nbc;
std::vector<InputPixelType> pixels;
// Process each of the boundary faces. These are N-d regions which border
// the edge of the buffer.
for ( typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::FaceListType::iterator
fit=faceList.begin(); fit != faceList.end(); ++fit)
{
ImageRegionIterator<OutputImageType> it = ImageRegionIterator<OutputImageType>(output, *fit);
ConstNeighborhoodIterator<InputImageType> bit =
ConstNeighborhoodIterator<InputImageType>(m_Radius, input, *fit);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
const unsigned int neighborhoodSize = bit.Size();
const unsigned int medianPosition = neighborhoodSize / 2;
while ( ! bit.IsAtEnd() )
{
// collect all the pixels in the neighborhood, note that we use
// GetPixel on the NeighborhoodIterator to honor the boundary conditions
pixels.resize(neighborhoodSize);
for (unsigned int i = 0; i < neighborhoodSize; ++i)
{
pixels[i]=( bit.GetPixel(i) );
}
// get the median value
const typename std::vector<InputPixelType>::iterator medianIterator = pixels.begin() + medianPosition;
std::nth_element(pixels.begin(), medianIterator, pixels.end());
it.Set( static_cast<typename OutputImageType::PixelType> (*medianIterator) );
++bit;
++it;
progress.CompletedPixel();
}
}
}
/**
* Standard "PrintSelf" method
*/
template <class TInputImage, class TOutput>
void
MedianImageFilter<TInputImage, TOutput>
::PrintSelf(
std::ostream& os,
Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Radius: " << m_Radius << std::endl;
}
} // end namespace itk
#endif
|