1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMorphologicalGradientImageFilter.h,v $
Language: C++
Date: $Date: 2006-03-29 14:53:40 $
Version: $Revision: 1.2 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkMorphologicalGradientImageFilter_h
#define __itkMorphologicalGradientImageFilter_h
#include "itkImageToImageFilter.h"
namespace itk {
/** \class MorphologicalGradientImageFilter
* \brief Morphological gradients enhance the variation of pixel intensity in a given neighborhood.
*
* The morphological gradient, also called the Beucher gradient, is the
* difference between the dilation and erosion by the structuring element.
* Morphological gradient is described in Chapter 3.8.1 of Pierre Soille's book
* "Morphological Image Analysis: Principles and Applications",
* Second Edition, Springer, 2003.
* According to this book, this filter can produce thick gradients, by
* increasing the size of the structuring element. Also, direcitonal
* gradiebts are possible by replacing the isotropic structuring
* element with a line segment.
* The name might be MorphologicalGradientMagnitudeImageFilter, but we
* chose to name the filter according to Pierre Soille's usage in the book.
*
* Note: This filter produces a scalar image that is the magnitude of
* the gradient.
*
* \author Gatan Lehmann. Biologie du Dveloppement et de la Reproduction, INRA de Jouy-en-Josas, France.
*
* \sa GradientMagnitudeImageFilter
* \ingroup ImageEnhancement MathematicalMorphologyImageFilters
*/
template<class TInputImage, class TOutputImage, class TKernel>
class ITK_EXPORT MorphologicalGradientImageFilter :
public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard class typedefs. */
typedef MorphologicalGradientImageFilter Self;
typedef ImageToImageFilter<TInputImage, TOutputImage>
Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Some convenient typedefs. */
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename InputImageType::ConstPointer InputImageConstPointer;
typedef typename InputImageType::RegionType InputImageRegionType;
typedef typename InputImageType::PixelType InputImagePixelType;
typedef typename OutputImageType::Pointer OutputImagePointer;
typedef typename OutputImageType::ConstPointer OutputImageConstPointer;
typedef typename OutputImageType::RegionType OutputImageRegionType;
typedef typename OutputImageType::PixelType OutputImagePixelType;
/** Kernel typedef. */
typedef TKernel KernelType;
/** ImageDimension constants */
itkStaticConstMacro(InputImageDimension, unsigned int,
TInputImage::ImageDimension);
itkStaticConstMacro(OutputImageDimension, unsigned int,
TOutputImage::ImageDimension);
itkStaticConstMacro(KernelDimension, unsigned int,
TKernel::NeighborhoodDimension);
/** Standard New method. */
itkNewMacro(Self);
/** Runtime information support. */
itkTypeMacro(MorphologicalGradientImageFilter,
ImageToImageFilter);
/** Set kernel (structuring element). */
itkSetMacro(Kernel, KernelType);
/** Get the kernel (structuring element). */
itkGetConstReferenceMacro(Kernel, KernelType);
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(SameDimensionCheck1,
(Concept::SameDimension<InputImageDimension, KernelDimension>));
itkConceptMacro(SameDimensionCheck2,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro(InputLessThanComparableCheck,
(Concept::LessThanComparable<InputImagePixelType>));
itkConceptMacro(InputGreaterThanComparableCheck,
(Concept::GreaterThanComparable<InputImagePixelType>));
itkConceptMacro(InputAdditiveOperatorsCheck,
(Concept::AdditiveOperators<InputImagePixelType>));
itkConceptMacro(InputConvertibleToOutputCheck,
(Concept::Convertible<InputImagePixelType, OutputImagePixelType>));
itkConceptMacro(KernelGreaterThanIntCheck,
(Concept::GreaterThanComparable<typename TKernel::PixelType, int>));
/** End concept checking */
#endif
protected:
MorphologicalGradientImageFilter();
~MorphologicalGradientImageFilter() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** MorphologicalGradientImageFilter need to make sure they request
* enough of an input image to account for the structuring element
* size. The input requested region is expanded by the radius of
* the structuring element. If the request extends past the
* LargestPossibleRegion for the input, the request is cropped by
* the LargestPossibleRegion.
*/
void GenerateInputRequestedRegion() ;
void GenerateData();
private:
MorphologicalGradientImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
/** kernel or structuring element to use. */
KernelType m_Kernel ;
} ; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMorphologicalGradientImageFilter.txx"
#endif
#endif
|