1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkNormalVectorDiffusionFunction.txx,v $
Language: C++
Date: $Date: 2008-03-03 13:58:45 $
Version: $Revision: 1.8 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkNormalVectorDiffusionFunction_txx_
#define __itkNormalVectorDiffusionFunction_txx_
#include "itkNormalVectorDiffusionFunction.h"
#include "itkNumericTraits.h"
#include "itkVector.h"
namespace itk {
template <class TSparseImageType>
NormalVectorDiffusionFunction <TSparseImageType>
::NormalVectorDiffusionFunction()
{
// check: should some of this be in Initialize?
RadiusType r;
for( unsigned int j = 0; j < ImageDimension; j++ )
{
r[j] = 1;
}
this->SetRadius(r);
this->SetTimeStep(static_cast<TimeStepType> (0.5/ImageDimension));
m_NormalProcessType = 0;
m_ConductanceParameter = NumericTraits<NodeValueType>::Zero;
m_FluxStopConstant = NumericTraits<NodeValueType>::Zero;
}
template <class TSparseImageType>
void
NormalVectorDiffusionFunction <TSparseImageType>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "NormalProcessType: " << m_NormalProcessType << std::endl;
os << indent << "ConductanceParameter: "<< m_ConductanceParameter << std::endl;
os << indent << "FluxStopConstant: "<< m_FluxStopConstant << std::endl;
}
template <class TSparseImageType>
void
NormalVectorDiffusionFunction <TSparseImageType>
::PrecomputeSparseUpdate( NeighborhoodType &it ) const
{
unsigned int i, j, k;
NodeValueType DotProduct;
NodeType* CenterNode = it.GetCenterPixel();
const NormalVectorType CenterPixel = CenterNode->m_Data;
NodeType *PreviousNode, *OtherNode;
NormalVectorType PreviousPixel;
Vector < NodeValueType, ImageDimension > gradient [ImageDimension];
NormalVectorType PositiveSidePixel[2], NegativeSidePixel[2], flux;
unsigned long stride [ImageDimension];
unsigned long center;
const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();
for( j = 0; j < ImageDimension; j++ )
{
stride[j] = it.GetStride( (unsigned long) j);
}
center = it.Size() / 2;
for (i=0;i<ImageDimension;i++) // flux offset axis
{
PreviousNode = it.GetPrevious (i);
if (PreviousNode == 0)
{
for( j = 0; j < ImageDimension; j++ )
{
CenterNode->m_Flux[i][j] = NumericTraits<NodeValueType>::Zero;
}
}
else
{
PreviousPixel = PreviousNode->m_Data;
for (j=0;j<ImageDimension;j++) // derivative axis
{
if (i!=j) // compute derivative on a plane
{
// compute differences (j-axis) in line with center pixel
OtherNode = it.GetPrevious (j);
if (OtherNode == 0)
{
NegativeSidePixel[0] = CenterPixel;
}
else
{
NegativeSidePixel[0] = OtherNode->m_Data;
}
OtherNode = it.GetNext (j);
if (OtherNode == 0)
{
PositiveSidePixel[0] = CenterPixel;
}
else
{
PositiveSidePixel[0] = OtherNode->m_Data;
}
// compute derivative (j-axis) offset from center pixel on i-axis
OtherNode = it.GetPixel (center - stride[i] - stride[j]);
if (OtherNode == 0)
{
NegativeSidePixel[1] = PreviousPixel;
}
else
{
NegativeSidePixel[1] = OtherNode->m_Data;
}
OtherNode = it.GetPixel (center - stride[i] + stride[j]);
if (OtherNode == 0)
{
PositiveSidePixel[1] = PreviousPixel;
}
else
{
PositiveSidePixel[1] = OtherNode->m_Data;
}
gradient[j] = ( ( PositiveSidePixel[0]+PositiveSidePixel[1] )-
( NegativeSidePixel[0]+NegativeSidePixel[1] ) )*
static_cast<NodeValueType>(0.25) * neighborhoodScales[j];
}
else // compute derivative on a line
{
gradient[i] = ( CenterPixel-PreviousPixel ) * neighborhoodScales[i];
}
} // end derivative axis
// now compute the intrinsic derivative
for (j = 0; j < ImageDimension; j++) // component axis
{
DotProduct = NumericTraits<NodeValueType>::Zero;
for (k = 0; k < ImageDimension; k++) // derivative axis
{
DotProduct += (gradient[k][j]*CenterNode->m_ManifoldNormal[i][k]);
}
flux[j] = gradient[i][j]-CenterNode->m_ManifoldNormal[i][i]*DotProduct;
}
// do following line for non-intrinsic derivative
//flux = gradient[i];
if (m_NormalProcessType == 1)
{
// anisotropic diffusion
CenterNode->m_Flux[i] =
flux * this->FluxStopFunction(flux.GetSquaredNorm());
}
else
{
// isotropic diffusion
CenterNode->m_Flux[i] = flux;
}
} // end if-else PreviousNode==0
} // end flux offset axis
}
template <class TSparseImageType>
typename NormalVectorDiffusionFunction <TSparseImageType>::NormalVectorType
NormalVectorDiffusionFunction <TSparseImageType>
::ComputeSparseUpdate( NeighborhoodType &it,
void*, const FloatOffsetType& ) const
{
unsigned int i;
NormalVectorType change;
NodeValueType DotProduct;
const NodeType* CenterNode = it.GetCenterPixel();
const NormalVectorType CenterPixel = CenterNode->m_Data;
NodeType* NextNode;
const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();
change = NumericTraits<NormalVectorType>::Zero;
for (i=0;i<ImageDimension;i++) // flux offset axis
{
NextNode = it.GetNext (i);
if (NextNode == 0)
{
change -= CenterNode->m_Flux[i] * neighborhoodScales[i];
}
else
{
change += ( NextNode->m_Flux[i] - CenterNode->m_Flux[i]) * neighborhoodScales[i];
}
} // end flux offset axis
DotProduct = change*CenterPixel;
change -= CenterPixel*DotProduct;
return change;
}
} // end namespace itk
#endif
|