1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkRecursiveGaussianImageFilter.h,v $
Language: C++
Date: $Date: 2005-05-12 14:42:04 $
Version: $Revision: 1.26 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkRecursiveGaussianImageFilter_h
#define __itkRecursiveGaussianImageFilter_h
#include "itkRecursiveSeparableImageFilter.h"
namespace itk
{
/** \class RecursiveGaussianImageFilter
* \brief Base class for computing IIR convolution with an approximation of a Gaussian kernel.
*
* \f[
* \frac{ 1 }{ \sigma \sqrt{ 2 \pi } } \exp{ \left( - \frac{x^2}{ 2 \sigma^2 } \right) }
* \f]
*
* RecursiveGaussianImageFilter is the base class for recursive filters that
* approximate convolution with the Gaussian kernel.
* This class implements the recursive filtering
* method proposed by R.Deriche in IEEE-PAMI
* Vol.12, No.1, January 1990, pp 78-87,
* "Fast Algorithms for Low-Level Vision"
*
* Details of the implementation are described in the technical report:
* R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives",
* INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz
*
* Further improvements of the algorithm are described in:
* G. Farneback & C.-F. Westin, "On Implementation of Recursive Gaussian
* Filters", so far unpublished.
*
* As compared to itk::DiscreteGaussianImageFilter, this filter tends
* to be faster for large kernels, and it can take the derivative
* of the blurred image in one step. Also, note that we have
* itk::RecursiveGaussianImageFilter::SetSigma(), but
* itk::DiscreteGaussianImageFilter::SetVariance().
*
* \ingroup ImageEnhancement Singlethreaded
*/
template <typename TInputImage, typename TOutputImage=TInputImage>
class ITK_EXPORT RecursiveGaussianImageFilter :
public RecursiveSeparableImageFilter<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef RecursiveGaussianImageFilter Self;
typedef RecursiveSeparableImageFilter<TInputImage,TOutputImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef typename Superclass::RealType RealType;
typedef typename Superclass::ScalarRealType ScalarRealType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Type macro that defines a name for this class */
itkTypeMacro( RecursiveGaussianImageFilter, RecursiveSeparableImageFilter );
/** Set/Get the Sigma, measured in world coordinates, of the Gaussian
* kernel. The default is 1.0. */
itkGetMacro( Sigma, ScalarRealType );
itkSetMacro( Sigma, ScalarRealType );
/** Enum type that indicates if the filter applies the equivalent operation
of convolving with a gaussian, first derivative of a gaussian or the
second derivative of a gaussian. */
typedef enum { ZeroOrder, FirstOrder, SecondOrder } OrderEnumType;
/** Type of the output image */
typedef TOutputImage OutputImageType;
/** Set/Get the flag for normalizing the gaussian over scale space.
When this flag is ON the filter will be normalized in such a way
that larger sigmas will not result in the image fading away.
\f[
\frac{ 1 }{ \sqrt{ 2 \pi } };
\f]
When the flag is OFF the normalization will conserve contant the
integral of the image intensity.
\f[
\frac{ 1 }{ \sigma \sqrt{ 2 \pi } };
\f]
For analyzing an image across Scale Space you want to enable
this flag. It is disabled by default. */
itkSetMacro( NormalizeAcrossScale, bool );
itkGetMacro( NormalizeAcrossScale, bool );
/** Set/Get the Order of the Gaussian to convolve with.
\li ZeroOrder is equivalent to convolving with a Gaussian. This
is the default.
\li FirstOrder is equivalent to convolving with the first derivative of a Gaussian.
\li SecondOrder is equivalent to convolving with the second derivative of a Gaussian.
*/
itkSetMacro( Order, OrderEnumType );
itkGetMacro( Order, OrderEnumType );
/** Explicitly set a zeroth order derivative. */
void SetZeroOrder();
/** Explicitly set a first order derivative. */
void SetFirstOrder();
/** Explicitly set a second order derivative. */
void SetSecondOrder();
protected:
RecursiveGaussianImageFilter();
virtual ~RecursiveGaussianImageFilter() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** Set up the coefficients of the filter to approximate a specific kernel.
* Here it is used to approximate a Gaussian or one of its
* derivatives. Parameter is the spacing along the dimension to
* filter. */
virtual void SetUp(ScalarRealType spacing);
private:
RecursiveGaussianImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
/** Compute the N coefficients in the recursive filter. */
void ComputeNCoefficients(ScalarRealType sigmad,
ScalarRealType A1, ScalarRealType B1, ScalarRealType W1, ScalarRealType L1,
ScalarRealType A2, ScalarRealType B2, ScalarRealType W2, ScalarRealType L2,
ScalarRealType& N0, ScalarRealType& N1,
ScalarRealType& N2, ScalarRealType& N3,
ScalarRealType& SN, ScalarRealType& DN, ScalarRealType& EN);
/** Compute the D coefficients in the recursive filter. */
void ComputeDCoefficients(ScalarRealType sigmad,
ScalarRealType W1, ScalarRealType L1, ScalarRealType W2, ScalarRealType L2,
ScalarRealType& SD, ScalarRealType& DD, ScalarRealType& ED);
/** Compute the M coefficients and the boundary coefficients in the
* recursive filter. */
void ComputeRemainingCoefficients(bool symmetric);
/** Sigma of the gaussian kernel. */
ScalarRealType m_Sigma;
/** Normalize the image across scale space */
bool m_NormalizeAcrossScale;
OrderEnumType m_Order;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkRecursiveGaussianImageFilter.txx"
#endif
#endif
|