File: itkRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (172 lines) | stat: -rw-r--r-- 6,574 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkRecursiveGaussianImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2005-05-12 14:42:04 $
  Version:   $Revision: 1.26 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkRecursiveGaussianImageFilter_h
#define __itkRecursiveGaussianImageFilter_h

#include "itkRecursiveSeparableImageFilter.h"

namespace itk
{
  
/** \class RecursiveGaussianImageFilter
 * \brief Base class for computing IIR convolution with an approximation of a  Gaussian kernel.
 *
 *    \f[    
 *      \frac{ 1 }{ \sigma \sqrt{ 2 \pi } } \exp{ \left( - \frac{x^2}{ 2 \sigma^2 } \right) }
 *    \f]
 *
 * RecursiveGaussianImageFilter is the base class for recursive filters that
 * approximate convolution with the Gaussian kernel.
 * This class implements the recursive filtering
 * method proposed by R.Deriche in IEEE-PAMI
 * Vol.12, No.1, January 1990, pp 78-87,
 * "Fast Algorithms for Low-Level Vision" 
 *
 * Details of the implementation are described in the technical report:
 * R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives",
 * INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz
 *
 * Further improvements of the algorithm are described in:
 * G. Farneback & C.-F. Westin, "On Implementation of Recursive Gaussian
 * Filters", so far unpublished.
 *
 * As compared to itk::DiscreteGaussianImageFilter, this filter tends
 * to be faster for large kernels, and it can take the derivative
 * of the blurred image in one step.  Also, note that we have
 * itk::RecursiveGaussianImageFilter::SetSigma(), but
 * itk::DiscreteGaussianImageFilter::SetVariance().
 * 
 * \ingroup ImageEnhancement Singlethreaded
 */
template <typename TInputImage, typename TOutputImage=TInputImage>
class ITK_EXPORT RecursiveGaussianImageFilter :
    public RecursiveSeparableImageFilter<TInputImage,TOutputImage> 
{
public:
  /** Standard class typedefs. */
  typedef RecursiveGaussianImageFilter  Self;
  typedef RecursiveSeparableImageFilter<TInputImage,TOutputImage> Superclass;
  typedef SmartPointer<Self>   Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  typedef typename Superclass::RealType      RealType;
  typedef typename Superclass::ScalarRealType      ScalarRealType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);
  
  /** Type macro that defines a name for this class */
  itkTypeMacro( RecursiveGaussianImageFilter, RecursiveSeparableImageFilter );

  /** Set/Get the Sigma, measured in world coordinates, of the Gaussian
   * kernel.  The default is 1.0.  */   
  itkGetMacro( Sigma, ScalarRealType );
  itkSetMacro( Sigma, ScalarRealType );

  /** Enum type that indicates if the filter applies the equivalent operation
      of convolving with a gaussian, first derivative of a gaussian or the 
      second derivative of a gaussian.  */
  typedef  enum { ZeroOrder, FirstOrder, SecondOrder } OrderEnumType;
 
  /** Type of the output image */
  typedef TOutputImage      OutputImageType;


  /** Set/Get the flag for normalizing the gaussian over scale space.
      When this flag is ON the filter will be normalized in such a way 
      that larger sigmas will not result in the image fading away.

      \f[    
            \frac{ 1 }{ \sqrt{ 2 \pi } };
      \f]

      When the flag is OFF the normalization will conserve contant the 
      integral of the image intensity. 
      \f[    
            \frac{ 1 }{ \sigma  \sqrt{ 2 \pi } };
      \f]
      For analyzing an image across Scale Space you want to enable
      this flag.  It is disabled by default.  */
  itkSetMacro( NormalizeAcrossScale, bool );
  itkGetMacro( NormalizeAcrossScale, bool );

  /** Set/Get the Order of the Gaussian to convolve with. 
      \li ZeroOrder is equivalent to convolving with a Gaussian.  This
      is the default.
      \li FirstOrder is equivalent to convolving with the first derivative of a Gaussian.
      \li SecondOrder is equivalent to convolving with the second derivative of a Gaussian.
    */
  itkSetMacro( Order, OrderEnumType );
  itkGetMacro( Order, OrderEnumType );

  /** Explicitly set a zeroth order derivative. */
  void SetZeroOrder();

  /** Explicitly set a first order derivative. */
  void SetFirstOrder();

  /** Explicitly set a second order derivative. */
  void SetSecondOrder();
  
   
protected:
  RecursiveGaussianImageFilter();
  virtual ~RecursiveGaussianImageFilter() {};
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Set up the coefficients of the filter to approximate a specific kernel.
   * Here it is used to approximate a Gaussian or one of its
   * derivatives. Parameter is the spacing along the dimension to
   * filter. */
  virtual void SetUp(ScalarRealType spacing);

private:  
  RecursiveGaussianImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  /** Compute the N coefficients in the recursive filter. */
  void ComputeNCoefficients(ScalarRealType sigmad,
          ScalarRealType A1, ScalarRealType B1, ScalarRealType W1, ScalarRealType L1,
          ScalarRealType A2, ScalarRealType B2, ScalarRealType W2, ScalarRealType L2,
          ScalarRealType& N0, ScalarRealType& N1,
          ScalarRealType& N2, ScalarRealType& N3,
          ScalarRealType& SN, ScalarRealType& DN, ScalarRealType& EN);
  /** Compute the D coefficients in the recursive filter. */
  void ComputeDCoefficients(ScalarRealType sigmad,
          ScalarRealType W1, ScalarRealType L1, ScalarRealType W2, ScalarRealType L2,
          ScalarRealType& SD, ScalarRealType& DD, ScalarRealType& ED);
  /** Compute the M coefficients and the boundary coefficients in the
   * recursive filter. */
  void ComputeRemainingCoefficients(bool symmetric);

  /** Sigma of the gaussian kernel. */   
  ScalarRealType m_Sigma;

  /** Normalize the image across scale space */
  bool m_NormalizeAcrossScale; 

  OrderEnumType m_Order;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkRecursiveGaussianImageFilter.txx"
#endif

#endif