File: itkResampleImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (648 lines) | stat: -rw-r--r-- 21,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkResampleImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-04 12:54:09 $
  Version:   $Revision: 1.61 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkResampleImageFilter_txx
#define _itkResampleImageFilter_txx

// First make sure that the configuration is available.
// This line can be removed once the optimized versions
// gets integrated into the main directories.
#include "itkConfigure.h"

#ifdef ITK_USE_OPTIMIZED_REGISTRATION_METHODS
#include "itkOptResampleImageFilter.txx"
#else


#include "itkResampleImageFilter.h"
#include "itkObjectFactory.h"
#include "itkIdentityTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkProgressReporter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"
#include "itkSpecialCoordinatesImage.h"

namespace itk
{

/**
 * Initialize new instance
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
ResampleImageFilter<TInputImage, TOutputImage,TInterpolatorPrecisionType>
::ResampleImageFilter()
{
  m_OutputSpacing.Fill(1.0);
  m_OutputOrigin.Fill(0.0);
  m_OutputDirection.SetIdentity();

  m_UseReferenceImage = false;

  m_Size.Fill( 0 );
  m_OutputStartIndex.Fill( 0 );
  
  m_Transform = IdentityTransform<TInterpolatorPrecisionType, ImageDimension>::New();
  m_Interpolator = LinearInterpolateImageFunction<InputImageType, TInterpolatorPrecisionType>::New();
  m_DefaultPixelValue = 0;
}


/**
 * Print out a description of self
 *
 * \todo Add details about this class
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage, TOutputImage,TInterpolatorPrecisionType>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  
  os << indent << "DefaultPixelValue: "
     << static_cast<typename NumericTraits<PixelType>::PrintType>(m_DefaultPixelValue)
     << std::endl;
  os << indent << "Size: " << m_Size << std::endl;
  os << indent << "OutputStartIndex: " << m_OutputStartIndex << std::endl;
  os << indent << "OutputSpacing: " << m_OutputSpacing << std::endl;
  os << indent << "OutputOrigin: " << m_OutputOrigin << std::endl;
  os << indent << "OutputDirection: " << m_OutputDirection << std::endl;
  os << indent << "Transform: " << m_Transform.GetPointer() << std::endl;
  os << indent << "Interpolator: " << m_Interpolator.GetPointer() << std::endl;
  os << indent << "UseReferenceImage: " << (m_UseReferenceImage ? "On" : "Off") << std::endl;
  return;
}



/**
 * Set the output image spacing.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::SetOutputSpacing(
  const double* spacing)
{
  SpacingType s(spacing);
  this->SetOutputSpacing( s );
}


/**
 * Set the output image origin.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::SetOutputOrigin(
  const double* origin)
{
  OriginPointType p(origin);
  this->SetOutputOrigin( p );
}


/**
 * Set up state of filter before multi-threading.
 * InterpolatorType::SetInputImage is not thread-safe and hence
 * has to be set up before ThreadedGenerateData
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::BeforeThreadedGenerateData()
{
  if( !m_Transform )
    {
    itkExceptionMacro(<< "Transform not set");
    }

  if( !m_Interpolator )
    {
    itkExceptionMacro(<< "Interpolator not set");
    }

  // Connect input image to interpolator
  m_Interpolator->SetInputImage( this->GetInput() );

}

/**
 * Set up state of filter after multi-threading.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::AfterThreadedGenerateData()
{
  // Disconnect input image from the interpolator
  m_Interpolator->SetInputImage( NULL );

}

/**
 * ThreadedGenerateData
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::ThreadedGenerateData(
  const OutputImageRegionType& outputRegionForThread,
  int threadId)
{
  // Check whether the input or the output is a
  // SpecialCoordinatesImage.  If either are, then we cannot use the
  // fast path since index mapping will definately not be linear.
  typedef SpecialCoordinatesImage<PixelType, ImageDimension> OutputSpecialCoordinatesImageType;
  typedef SpecialCoordinatesImage<InputPixelType, InputImageDimension> InputSpecialCoordinatesImageType;

  // Our friend the SGI needs these declarations to avoid unresolved
  // linker errors.
#ifdef __sgi
  InputSpecialCoordinatesImageType::Pointer foo =
    InputSpecialCoordinatesImageType::New();
  OutputSpecialCoordinatesImageType::Pointer bar =
    OutputSpecialCoordinatesImageType::New();
#endif
  if (dynamic_cast<const InputSpecialCoordinatesImageType *>(this->GetInput())
      || dynamic_cast<const OutputSpecialCoordinatesImageType *>(this->GetOutput()))
    {
    this->NonlinearThreadedGenerateData(outputRegionForThread, threadId);
    return;
    }
  
  // Check whether we can use a fast path for resampling. Fast path
  // can be used if the transformation is linear. Transform respond
  // to the IsLinear() call.
  if( m_Transform->IsLinear() )
    {
    this->LinearThreadedGenerateData(outputRegionForThread, threadId);
    return;
    }

  // Otherwise, we use the normal method where the transform is called
  // for computing the transformation of every point.
  this->NonlinearThreadedGenerateData(outputRegionForThread, threadId);
  
}


template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::NonlinearThreadedGenerateData(
  const OutputImageRegionType& outputRegionForThread,
  int threadId)
{
  // Get the output pointers
  OutputImagePointer      outputPtr = this->GetOutput();

  // Get ths input pointers
  InputImageConstPointer inputPtr=this->GetInput();

  // Create an iterator that will walk the output region for this thread.
  typedef ImageRegionIteratorWithIndex<TOutputImage> OutputIterator;

  OutputIterator outIt(outputPtr, outputRegionForThread);

  // Define a few indices that will be used to translate from an input pixel
  // to an output pixel
  PointType outputPoint;         // Coordinates of current output pixel
  PointType inputPoint;          // Coordinates of current input pixel

  typedef ContinuousIndex<TInterpolatorPrecisionType, ImageDimension> ContinuousIndexType;
  ContinuousIndexType inputIndex;

  // Support for progress methods/callbacks
  ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());
        
  typedef typename InterpolatorType::OutputType OutputType;

  // Min/max values of the output pixel type AND these values
  // represented as the output type of the interpolator
  const PixelType minValue =  NumericTraits<PixelType >::NonpositiveMin();
  const PixelType maxValue =  NumericTraits<PixelType >::max();

  const OutputType minOutputValue = static_cast<OutputType>(minValue);
  const OutputType maxOutputValue = static_cast<OutputType>(maxValue);
  
  // Walk the output region
  outIt.GoToBegin();


  // This fix works for images up to approximately 2^25 pixels in
  // any dimension.  If the image is larger than this, this constant
  // needs to be made lower.
  double precisionConstant = 1<<(NumericTraits<double>::digits>>1);

  while ( !outIt.IsAtEnd() )
    {
    // Determine the index of the current output pixel
    outputPtr->TransformIndexToPhysicalPoint( outIt.GetIndex(), outputPoint );

    // Compute corresponding input pixel position
    inputPoint = m_Transform->TransformPoint(outputPoint);
    inputPtr->TransformPhysicalPointToContinuousIndex(inputPoint, inputIndex);

    // The inputIndex is precise to many decimal points, but this precision
    // involves some error in the last bits.  
    // Sometimes, when an index should be inside of the image, the
    // index will be slightly
    // greater than the largest index in the image, like 255.00000000002
    // for a image of size 256.  This can cause an empty row to show up
    // at the bottom of the image.
    // Therefore, the following routine uses a
    // precisionConstant that specifies the number of relevant bits,
    // and the value is truncated to this precision.
    for (int i=0; i < ImageDimension; ++i)
      {
      double roundedInputIndex = vcl_floor(inputIndex[i]);
      double inputIndexFrac = inputIndex[i] - roundedInputIndex;
      double newInputIndexFrac = vcl_floor(precisionConstant * inputIndexFrac)/precisionConstant;
      inputIndex[i] = roundedInputIndex + newInputIndexFrac;
      }    
    
    // Evaluate input at right position and copy to the output
    if( m_Interpolator->IsInsideBuffer(inputIndex) )
      {
      PixelType pixval;
      const OutputType value
        = m_Interpolator->EvaluateAtContinuousIndex(inputIndex);
      if( value < minOutputValue )
        {
        pixval = minValue;
        }
      else if( value > maxOutputValue )
        {
        pixval = maxValue;
        }
      else 
        {
        pixval = static_cast<PixelType>( value );
        }
      outIt.Set( pixval );      
      }
    else
      {
      outIt.Set(m_DefaultPixelValue); // default background value
      }

    progress.CompletedPixel();
    ++outIt;
    }

  return;
}

template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::LinearThreadedGenerateData(
  const OutputImageRegionType& outputRegionForThread,
  int threadId)
{
  // Get the output pointers
  OutputImagePointer      outputPtr = this->GetOutput();

  // Get ths input pointers
  InputImageConstPointer inputPtr=this->GetInput();

  // Create an iterator that will walk the output region for this thread.
  typedef ImageLinearIteratorWithIndex<TOutputImage> OutputIterator;

  OutputIterator outIt(outputPtr, outputRegionForThread);
  outIt.SetDirection( 0 );

  // Define a few indices that will be used to translate from an input pixel
  // to an output pixel
  PointType outputPoint;         // Coordinates of current output pixel
  PointType inputPoint;          // Coordinates of current input pixel
  PointType tmpOutputPoint;
  PointType tmpInputPoint;

  typedef ContinuousIndex<TInterpolatorPrecisionType, ImageDimension> ContinuousIndexType;
  ContinuousIndexType inputIndex;
  ContinuousIndexType tmpInputIndex;
  
  typedef typename PointType::VectorType VectorType;
  VectorType delta;          // delta in input continuous index coordinate frame
  IndexType index;

  // Support for progress methods/callbacks
  ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());
        
  typedef typename InterpolatorType::OutputType OutputType;

  // Cache information from the superclass
  PixelType defaultValue = this->GetDefaultPixelValue();

  // Min/max values of the output pixel type AND these values
  // represented as the output type of the interpolator
  const PixelType minValue =  NumericTraits<PixelType >::NonpositiveMin();
  const PixelType maxValue =  NumericTraits<PixelType >::max();

  const OutputType minOutputValue = static_cast<OutputType>(minValue);
  const OutputType maxOutputValue = static_cast<OutputType>(maxValue);
  
  
  // Determine the position of the first pixel in the scanline
  index = outIt.GetIndex();
  outputPtr->TransformIndexToPhysicalPoint( index, outputPoint );
  

  // Compute corresponding input pixel position
  inputPoint = m_Transform->TransformPoint(outputPoint);
  inputPtr->TransformPhysicalPointToContinuousIndex(inputPoint, inputIndex);
  
  // As we walk across a scan line in the output image, we trace
  // an oriented/scaled/translated line in the input image.  Cache
  // the delta along this line in continuous index space of the input
  // image. This allows us to use vector addition to model the
  // transformation.
  //
  // To find delta, we take two pixels adjacent in a scanline 
  // and determine the continuous indices of these pixels when 
  // mapped to the input coordinate frame. We use the difference
  // between these two continuous indices as the delta to apply
  // to an index to trace line in the input image as we move 
  // across the scanline of the output image.
  //
  // We determine delta in this manner so that Images and
  // OrientedImages are both handled properly (with the delta for
  // OrientedImages taking into account the direction cosines).
  // 
  ++index[0];
  outputPtr->TransformIndexToPhysicalPoint( index, tmpOutputPoint );
  tmpInputPoint = m_Transform->TransformPoint( tmpOutputPoint );
  inputPtr->TransformPhysicalPointToContinuousIndex(tmpInputPoint,
                                                    tmpInputIndex);
  delta = tmpInputIndex - inputIndex;


  // This fix works for images up to approximately 2^25 pixels in
  // any dimension.  If the image is larger than this, this constant
  // needs to be made lower.
  double precisionConstant = 1<<(NumericTraits<double>::digits>>1);

  // Delta is precise to many decimal points, but this precision
  // involves some error in the last bits.  This error can accumulate
  // as the delta values are added.
  // Sometimes, when the accumulated delta should be inside of the
  // image, it will be slightly
  // greater than the largest index in the image, like 255.00000000002
  // for a image of size 256.  This can cause an empty column to show up
  // at the right side of the image. If we instead
  // truncate this delta value to some precision, this solves the problem.
  // Therefore, the following routine uses a
  // precisionConstant that specifies the number of relevant bits,
  // and the value is truncated to this precision.
  for (int i=0; i < ImageDimension; ++i)
    {
    double roundedDelta = vcl_floor(delta[i]);
    double deltaFrac = delta[i] - roundedDelta;
    double newDeltaFrac = vcl_floor(precisionConstant * deltaFrac)/precisionConstant;
    delta[i] = roundedDelta + newDeltaFrac;
    }


  while ( !outIt.IsAtEnd() )
    {
    // Determine the continuous index of the first pixel of output
    // scanline when mapped to the input coordinate frame.
    //

    // First get the position of the pixel in the output coordinate frame
    index = outIt.GetIndex();
    outputPtr->TransformIndexToPhysicalPoint( index, outputPoint );

    // Compute corresponding input pixel continuous index, this index
    // will incremented in the scanline loop
    inputPoint = m_Transform->TransformPoint(outputPoint);
    inputPtr->TransformPhysicalPointToContinuousIndex(inputPoint, inputIndex);
    
    // The inputIndex is precise to many decimal points, but this precision
    // involves some error in the last bits.
    // Sometimes, when an index should be inside of the image, the
    // index will be slightly
    // greater than the largest index in the image, like 255.00000000002
    // for a image of size 256.  This can cause an empty row to show up
    // at the bottom of the image.
    // Therefore, the following routine uses a
    // precisionConstant that specifies the number of relevant bits,
    // and the value is truncated to this precision.
    for (int i=0; i < ImageDimension; ++i)
      {
      double roundedInputIndex = vcl_floor(inputIndex[i]);
      double inputIndexFrac = inputIndex[i] - roundedInputIndex;
      double newInputIndexFrac = vcl_floor(precisionConstant * inputIndexFrac)/precisionConstant;
      inputIndex[i] = roundedInputIndex + newInputIndexFrac;
      }    


    while( !outIt.IsAtEndOfLine() )
      {
      // Evaluate input at right position and copy to the output
      if( m_Interpolator->IsInsideBuffer(inputIndex) )
        {
        PixelType pixval;
        const OutputType value
          = m_Interpolator->EvaluateAtContinuousIndex(inputIndex);
        if( value <  minOutputValue )
          {
          pixval = minValue;
          }
        else if( value > maxOutputValue )
          {
          pixval = maxValue;
          }
        else 
          {
          pixval = static_cast<PixelType>( value );
          }
        outIt.Set( pixval );      
        }
      else
        {
        outIt.Set(defaultValue); // default background value
        }
      
      progress.CompletedPixel();
      ++outIt;
      inputIndex += delta;
      }
    outIt.NextLine();
    }

  return;
}


/** 
 * Inform pipeline of necessary input image region
 *
 * Determining the actual input region is non-trivial, especially
 * when we cannot assume anything about the transform being used.
 * So we do the easy thing and request the entire input image.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::GenerateInputRequestedRegion()
{
  // call the superclass's implementation of this method
  Superclass::GenerateInputRequestedRegion();

  if ( !this->GetInput() )
    {
    return;
    }

  // get pointers to the input and output
  InputImagePointer  inputPtr  = 
    const_cast< TInputImage *>( this->GetInput() );

  // Request the entire input image
  InputImageRegionType inputRegion;
  inputRegion = inputPtr->GetLargestPossibleRegion();
  inputPtr->SetRequestedRegion(inputRegion);

  return;
}


/** 
 * Set the smart pointer to the reference image that will provide
 * the grid parameters for the output image.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
const typename ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>::OutputImageType *
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::GetReferenceImage() const
{
  Self * surrogate = const_cast< Self * >( this );
  const OutputImageType * referenceImage = 
    static_cast<const OutputImageType *>(surrogate->ProcessObject::GetInput(1));
  return referenceImage;
}


/** 
 * Set the smart pointer to the reference image that will provide
 * the grid parameters for the output image.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::SetReferenceImage( const TOutputImage *image )
{
  itkDebugMacro("setting input ReferenceImage to " << image);
  if( image != static_cast<const TOutputImage *>(this->GetInput( 1 )) )
    {
    this->ProcessObject::SetNthInput(1, const_cast< TOutputImage *>( image ) );
    this->Modified();
    }
}

/** 
 * Inform pipeline of required output region
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
void 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::GenerateOutputInformation()
{
  // call the superclass' implementation of this method
  Superclass::GenerateOutputInformation();

  // get pointers to the input and output
  OutputImagePointer outputPtr = this->GetOutput();
  if ( !outputPtr )
    {
    return;
    }

  const OutputImageType * referenceImage = this->GetReferenceImage();

  // Set the size of the output region
  if( m_UseReferenceImage && referenceImage )
    {
    outputPtr->SetLargestPossibleRegion( referenceImage->GetLargestPossibleRegion() );
    }
  else
    {
    typename TOutputImage::RegionType outputLargestPossibleRegion;
    outputLargestPossibleRegion.SetSize( m_Size );
    outputLargestPossibleRegion.SetIndex( m_OutputStartIndex );
    outputPtr->SetLargestPossibleRegion( outputLargestPossibleRegion );
    }

  // Set spacing and origin
  if (m_UseReferenceImage && referenceImage)
    {
    outputPtr->SetSpacing( referenceImage->GetSpacing() );
    outputPtr->SetOrigin( referenceImage->GetOrigin() );
    outputPtr->SetDirection( referenceImage->GetDirection() );
    }
  else
    {
    outputPtr->SetSpacing( m_OutputSpacing );
    outputPtr->SetOrigin( m_OutputOrigin );
    outputPtr->SetDirection( m_OutputDirection );
    }
  return;
}



/** 
 * Verify if any of the components has been modified.
 */
template <class TInputImage, class TOutputImage, class TInterpolatorPrecisionType>
unsigned long 
ResampleImageFilter<TInputImage,TOutputImage,TInterpolatorPrecisionType>
::GetMTime( void ) const
{
  unsigned long latestTime = Object::GetMTime(); 

  if( m_Transform )
    {
    if( latestTime < m_Transform->GetMTime() )
      {
      latestTime = m_Transform->GetMTime();
      }
    }

  if( m_Interpolator )
    {
    if( latestTime < m_Interpolator->GetMTime() )
      {
      latestTime = m_Interpolator->GetMTime();
      }
    }

  return latestTime;
}



} // end namespace itk

#endif

#endif