File: itkScalarAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (144 lines) | stat: -rw-r--r-- 4,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkScalarAnisotropicDiffusionFunction.txx,v $
  Language:  C++
  Date:      $Date: 2005-10-03 15:18:45 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkScalarAnisotropicDiffusionFunction_txx_
#define __itkScalarAnisotropicDiffusionFunction_txx_

#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
//#include <iostream.h>

namespace itk {

template <class TImage>
void
ScalarAnisotropicDiffusionFunction<TImage>
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
  typedef ConstNeighborhoodIterator<TImage>      RNI_type;
  typedef ConstNeighborhoodIterator<TImage> SNI_type;
  typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TImage> BFC_type;

  unsigned int i;
  ZeroFluxNeumannBoundaryCondition<TImage>  bc;
  PixelType                                 accumulator;
  PixelType                                 val;
  PixelType                                 counter;
  BFC_type                                  bfc;
  typename BFC_type::FaceListType           faceList;
  typename RNI_type::RadiusType             radius;
  typename BFC_type::FaceListType::iterator fit;

  RNI_type                              iterator_list[ImageDimension];
  SNI_type                              face_iterator_list[ImageDimension];
  DerivativeOperator<PixelType,
    ImageDimension> operator_list[ImageDimension];
  
  unsigned long Stride[ImageDimension];
  unsigned long Center[ImageDimension];

  // Set up the derivative operators, one for each dimension
  for (i = 0; i < ImageDimension; ++i)
    {
    operator_list[i].SetOrder(1);
    operator_list[i].SetDirection(i);
    operator_list[i].CreateDirectional();
    radius[i] = operator_list[i].GetRadius()[i];
    }



  // Get the various region "faces" that are on the data set boundary.
  faceList = bfc(ip, ip->GetRequestedRegion(), radius);
  fit      = faceList.begin();

  // Now do the actual processing
  accumulator = NumericTraits<PixelType>::Zero;
  counter     = NumericTraits<PixelType>::Zero;

  // First process the non-boundary region

  // Instead of maintaining a single N-d neighborhood of pointers,
  // we maintain a list of 1-d neighborhoods along each axial direction.
  // This is more efficient for higher dimensions.
  for (i = 0; i < ImageDimension; ++i)
    {
    iterator_list[i]=RNI_type(operator_list[i].GetRadius(), ip, *fit); 
    iterator_list[i].GoToBegin();
    Center[i]=iterator_list[i].Size()/2;
    Stride[i]=iterator_list[i].GetStride(i);
    }  
  while ( !iterator_list[0].IsAtEnd() )
    {
    counter += NumericTraits<PixelType>::One;
    for (i = 0; i < ImageDimension; ++i)
      {
  
  val = static_cast<PixelType> (iterator_list[i].GetPixel(Center[i]+Stride[i]))-
    static_cast<PixelType> (iterator_list[i].GetPixel(Center[i]-Stride[i]));
  double tempval;
  tempval = val/-2.0f;
  val = static_cast<PixelType>(tempval * this->m_ScaleCoefficients[i]);
  accumulator += val * val;
  ++iterator_list[i];
      }
    }
  
  // Go on to the next region(s).  These are on the boundary faces.
  ++fit; 
  while ( fit != faceList.end() )
    {
    for (i = 0; i < ImageDimension; ++i)
      {
      face_iterator_list[i]=SNI_type(operator_list[i].GetRadius(), ip,
                                     *fit);
      face_iterator_list[i].OverrideBoundaryCondition(&bc);
      face_iterator_list[i].GoToBegin();
      Center[i]=face_iterator_list[i].Size()/2;
      Stride[i]=face_iterator_list[i].GetStride(i);
      }
        
    while ( ! face_iterator_list[0].IsAtEnd() )
      {
      counter += NumericTraits<PixelType>::One;
      for (i = 0; i < ImageDimension; ++i)
        {
        val = static_cast<PixelType> (
                   face_iterator_list[i].GetPixel(Center[i]+Stride[i]))-
              static_cast<PixelType> (
                                      face_iterator_list[i].GetPixel(Center[i]-Stride[i]));
        double tempval;
        tempval = val / -2.0f;
        val = static_cast<PixelType>(
                   tempval * this->m_ScaleCoefficients[i]);
        accumulator += val * val;
        ++face_iterator_list[i];
        }
      }
    ++fit;
    }
  
  this->SetAverageGradientMagnitudeSquared( (double) (accumulator / counter) );

}

}// end namespace itk


#endif