1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSmoothingRecursiveGaussianImageFilter.txx,v $
Language: C++
Date: $Date: 2007-09-27 13:55:36 $
Version: $Revision: 1.15 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkSmoothingRecursiveGaussianImageFilter_txx
#define _itkSmoothingRecursiveGaussianImageFilter_txx
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"
namespace itk
{
/**
* Constructor
*/
template <typename TInputImage, typename TOutputImage >
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SmoothingRecursiveGaussianImageFilter()
{
m_NormalizeAcrossScale = false;
m_FirstSmoothingFilter = FirstGaussianFilterType::New();
m_FirstSmoothingFilter->SetOrder( FirstGaussianFilterType::ZeroOrder );
m_FirstSmoothingFilter->SetDirection( 0 );
m_FirstSmoothingFilter->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
m_FirstSmoothingFilter->ReleaseDataFlagOn();
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ] = InternalGaussianFilterType::New();
m_SmoothingFilters[ i ]->SetOrder( InternalGaussianFilterType::ZeroOrder );
m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
m_SmoothingFilters[ i ]->SetDirection( i+1 );
m_SmoothingFilters[ i ]->ReleaseDataFlagOn();
}
m_SmoothingFilters[0]->SetInput( m_FirstSmoothingFilter->GetOutput() );
for( unsigned int i = 1; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetInput(
m_SmoothingFilters[i-1]->GetOutput() );
}
m_CastingFilter = CastingFilterType::New();
m_CastingFilter->SetInput(m_SmoothingFilters[ImageDimension-2]->GetOutput());
//
// NB: We must call SetSigma in order to initialize the smoothing
// filters with the default scale. However, m_Sigma must first be
// initialized (it is used inside SetSigma) and it must be different
// from 1.0 or the call will be ignored.
this->m_Sigma = 0.0;
this->SetSigma( 1.0 );
}
/**
* Set value of Sigma
*/
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigma( ScalarRealType sigma )
{
if (sigma != this->m_Sigma)
{
this->m_Sigma = sigma;
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetSigma( sigma );
}
m_FirstSmoothingFilter->SetSigma( sigma );
this->Modified();
}
}
/**
* Set Normalize Across Scale Space
*/
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNormalizeAcrossScale( bool normalize )
{
m_NormalizeAcrossScale = normalize;
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( normalize );
}
m_FirstSmoothingFilter->SetNormalizeAcrossScale( normalize );
this->Modified();
}
//
//
//
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// This filter needs all of the input
typename SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>::InputImagePointer image = const_cast<InputImageType *>( this->GetInput() );
if( image )
{
image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
}
}
//
//
//
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
TOutputImage *out = dynamic_cast<TOutputImage*>(output);
if (out)
{
out->SetRequestedRegion( out->GetLargestPossibleRegion() );
}
}
/**
* Compute filter for Gaussian kernel
*/
template <typename TInputImage, typename TOutputImage >
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage >
::GenerateData(void)
{
itkDebugMacro(<< "SmoothingRecursiveGaussianImageFilter generating data ");
const typename TInputImage::ConstPointer inputImage( this->GetInput() );
const typename TInputImage::RegionType region = inputImage->GetRequestedRegion();
const typename TInputImage::SizeType size = region.GetSize();
for( unsigned int d=0; d < ImageDimension; d++)
{
if( size[d] < 4 )
{
itkExceptionMacro("The number of pixels along dimension " << d << " is less than 4. This filter requires a minimum of four pixels along the dimension to be processed.");
}
}
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Register the filter with the with progress accumulator using
// equal weight proportion
for( unsigned int i = 0; i<ImageDimension-1; i++ )
{
progress->RegisterInternalFilter(m_SmoothingFilters[i],1.0 / (ImageDimension));
}
progress->RegisterInternalFilter(m_FirstSmoothingFilter,1.0 / (ImageDimension));
m_FirstSmoothingFilter->SetInput( inputImage );
// graft our output to the internal filter to force the proper regions
// to be generated
m_CastingFilter->GraftOutput( this->GetOutput() );
m_CastingFilter->Update();
this->GraftOutput(m_CastingFilter->GetOutput());
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
os << "Sigma: " << m_Sigma << std::endl;
}
} // end namespace itk
#endif
|