File: itkVectorAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (124 lines) | stat: -rw-r--r-- 4,228 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkVectorAnisotropicDiffusionFunction.txx,v $
  Language:  C++
  Date:      $Date: 2003-09-10 14:28:58 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVectorAnisotropicDiffusionFunction_txx_
#define __itkVectorAnisotropicDiffusionFunction_txx_
#include "itkVectorAnisotropicDiffusionFunction.h"

#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkVectorNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"

namespace itk {

template <class TImage>
void
VectorAnisotropicDiffusionFunction<TImage>
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
  typedef ConstNeighborhoodIterator<TImage>      RNI_type;
  typedef ConstNeighborhoodIterator<TImage> SNI_type;
  typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TImage> BFC_type;

  unsigned int i, j;
  //  ZeroFluxNeumannBoundaryCondition<TImage>  bc;
  double                                    accumulator;
  PixelType                                 val;
  unsigned long                             counter;
  BFC_type                                  bfc;
  typename BFC_type::FaceListType           faceList;
  typename RNI_type::RadiusType             radius;
  typename BFC_type::FaceListType::iterator fit;

  VectorNeighborhoodInnerProduct<TImage> SIP;
  VectorNeighborhoodInnerProduct<TImage>      IP;
  RNI_type                                    iterator_list[ImageDimension];
  SNI_type                               face_iterator_list[ImageDimension];
  typedef typename PixelType::ValueType PixelValueType;
  DerivativeOperator<PixelValueType, ImageDimension> operator_list[ImageDimension];
  
  // Set up the derivative operators, one for each dimension
  for (i = 0; i < ImageDimension; ++i)
    {
    operator_list[i].SetOrder(1);
    operator_list[i].SetDirection(i);
    operator_list[i].CreateDirectional();
    radius[i] = operator_list[i].GetRadius()[i];
    }

  // Get the various region "faces" that are on the data set boundary.
  faceList = bfc(ip, ip->GetRequestedRegion(), radius);
  fit      = faceList.begin();

  // Now do the actual processing
  accumulator = 0.0;
  counter     = 0;

  // First process the non-boundary region

  // Instead of maintaining a single N-d neighborhood of pointers,
  // we maintain a list of 1-d neighborhoods along each axial direction.
  // This is more efficient for higher dimensions.
  for (i = 0; i < ImageDimension; ++i)
    {
    iterator_list[i]=RNI_type(operator_list[i].GetRadius(), ip, *fit);
    iterator_list[i].GoToBegin();
    }  
  while ( !iterator_list[0].IsAtEnd() )
    {
    counter++;
    for (i = 0; i < ImageDimension; ++i)
      {
      val = IP(iterator_list[i], operator_list[i]);
      for (j = 0; j < VectorDimension; ++j)
        {  accumulator += val[j] * val[j];  }
      ++iterator_list[i];
      }
    }
  
  // Go on to the next region(s).  These are on the boundary faces.
  ++fit; 
  while ( fit != faceList.end() )
    {
    for (i = 0; i < ImageDimension; ++i)
      {
      face_iterator_list[i]=SNI_type(operator_list[i].GetRadius(), ip, *fit);
      face_iterator_list[i].GoToBegin();
      }
        
    while ( ! face_iterator_list[0].IsAtEnd() )
      {
      counter++;
      for (i = 0; i < ImageDimension; ++i)
        {
        val = SIP(face_iterator_list[i], operator_list[i]);
        for (j= 0; j < VectorDimension; ++j)
          {  accumulator += val[j] * val[j];  }
        ++face_iterator_list[i];
        }
      }
    ++fit;
    }
  
  this->SetAverageGradientMagnitudeSquared((double) accumulator / counter);
}

}// end namespace itk


#endif