1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVectorAnisotropicDiffusionFunction.txx,v $
Language: C++
Date: $Date: 2003-09-10 14:28:58 $
Version: $Revision: 1.6 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorAnisotropicDiffusionFunction_txx_
#define __itkVectorAnisotropicDiffusionFunction_txx_
#include "itkVectorAnisotropicDiffusionFunction.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkVectorNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
namespace itk {
template <class TImage>
void
VectorAnisotropicDiffusionFunction<TImage>
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
typedef ConstNeighborhoodIterator<TImage> RNI_type;
typedef ConstNeighborhoodIterator<TImage> SNI_type;
typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TImage> BFC_type;
unsigned int i, j;
// ZeroFluxNeumannBoundaryCondition<TImage> bc;
double accumulator;
PixelType val;
unsigned long counter;
BFC_type bfc;
typename BFC_type::FaceListType faceList;
typename RNI_type::RadiusType radius;
typename BFC_type::FaceListType::iterator fit;
VectorNeighborhoodInnerProduct<TImage> SIP;
VectorNeighborhoodInnerProduct<TImage> IP;
RNI_type iterator_list[ImageDimension];
SNI_type face_iterator_list[ImageDimension];
typedef typename PixelType::ValueType PixelValueType;
DerivativeOperator<PixelValueType, ImageDimension> operator_list[ImageDimension];
// Set up the derivative operators, one for each dimension
for (i = 0; i < ImageDimension; ++i)
{
operator_list[i].SetOrder(1);
operator_list[i].SetDirection(i);
operator_list[i].CreateDirectional();
radius[i] = operator_list[i].GetRadius()[i];
}
// Get the various region "faces" that are on the data set boundary.
faceList = bfc(ip, ip->GetRequestedRegion(), radius);
fit = faceList.begin();
// Now do the actual processing
accumulator = 0.0;
counter = 0;
// First process the non-boundary region
// Instead of maintaining a single N-d neighborhood of pointers,
// we maintain a list of 1-d neighborhoods along each axial direction.
// This is more efficient for higher dimensions.
for (i = 0; i < ImageDimension; ++i)
{
iterator_list[i]=RNI_type(operator_list[i].GetRadius(), ip, *fit);
iterator_list[i].GoToBegin();
}
while ( !iterator_list[0].IsAtEnd() )
{
counter++;
for (i = 0; i < ImageDimension; ++i)
{
val = IP(iterator_list[i], operator_list[i]);
for (j = 0; j < VectorDimension; ++j)
{ accumulator += val[j] * val[j]; }
++iterator_list[i];
}
}
// Go on to the next region(s). These are on the boundary faces.
++fit;
while ( fit != faceList.end() )
{
for (i = 0; i < ImageDimension; ++i)
{
face_iterator_list[i]=SNI_type(operator_list[i].GetRadius(), ip, *fit);
face_iterator_list[i].GoToBegin();
}
while ( ! face_iterator_list[0].IsAtEnd() )
{
counter++;
for (i = 0; i < ImageDimension; ++i)
{
val = SIP(face_iterator_list[i], operator_list[i]);
for (j= 0; j < VectorDimension; ++j)
{ accumulator += val[j] * val[j]; }
++face_iterator_list[i];
}
}
++fit;
}
this->SetAverageGradientMagnitudeSquared((double) accumulator / counter);
}
}// end namespace itk
#endif
|