1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVectorConfidenceConnectedImageFilter.h,v $
Language: C++
Date: $Date: 2006-04-03 15:07:52 $
Version: $Revision: 1.4 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorConfidenceConnectedImageFilter_h
#define __itkVectorConfidenceConnectedImageFilter_h
#include "itkImage.h"
#include "itkImageToImageFilter.h"
#include "itkMahalanobisDistanceThresholdImageFunction.h"
namespace itk{
/** /class VectorConfidenceConnectedImageFilter
* /brief Segment pixels with similar statistics using connectivity
*
* This filter extracts a connected set of pixels whose pixel
* intensities are consistent with the pixel statistics of a seed
* point. The mean and variance across a neighborhood (8-connected,
* 26-connected, etc.) are calculated for a seed point. Then
* pixels connected to this seed point whose values are within
* the confidence interval for the seed point are grouped. The
* width of the confidence interval is controlled by the "Multiplier"
* variable (the confidence interval is the mean plus or minus
* the "Multiplier" times the standard deviation). If the intensity
* variations across a segment were gaussian, a "Multiplier" setting
* of 2.5 would define a confidence interval wide enough to capture
* 99% of samples in the segment.
*
* After this initial segmentation is calculated, the mean and
* variance are re-calculated. All the pixels in the previous
* segmentation are used to calculate the mean the standard deviation
* (as opposed to using the pixels in the neighborhood of the seed
* point). The segmentation is then recalculted using these refined
* estimates for the mean and variance of the pixel values. This
* process is repeated for the specified number of iterations.
* Setting the "NumberOfIterations" to zero stops the algorithm
* after the initial segmentation from the seed point.
*
* NOTE: the lower and upper threshold are restricted to lie within the
* valid numeric limits of the input data pixel type. Also, the limits
* may be adjusted to contain the seed point's intensity.
* \ingroup RegionGrowingSegmentation
*/
template <class TInputImage, class TOutputImage>
class ITK_EXPORT VectorConfidenceConnectedImageFilter:
public ImageToImageFilter<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef VectorConfidenceConnectedImageFilter Self;
typedef ImageToImageFilter<TInputImage,TOutputImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(VectorConfidenceConnectedImageFilter,
ImageToImageFilter);
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename InputImageType::RegionType InputImageRegionType;
typedef typename InputImageType::PixelType InputImagePixelType;
typedef typename InputImageType::IndexType IndexType;
typedef typename InputImageType::SizeType SizeType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointer;
typedef typename OutputImageType::RegionType OutputImageRegionType;
typedef typename OutputImageType::PixelType OutputImagePixelType;
typedef std::vector< IndexType > SeedsContainerType;
typedef MahalanobisDistanceThresholdImageFunction<
InputImageType >
DistanceThresholdFunctionType;
typedef typename DistanceThresholdFunctionType::CovarianceMatrixType CovarianceMatrixType;
typedef typename DistanceThresholdFunctionType::MeanVectorType MeanVectorType;
typedef typename DistanceThresholdFunctionType::Pointer DistanceThresholdFunctionPointer;
void PrintSelf ( std::ostream& os, Indent indent ) const;
/** Set seed point. This method is deprecated, please use AddSeed() */
void SetSeed(const IndexType & seed)
{
m_Seeds.clear();
this->AddSeed( seed );
};
/** Add seed point. */
void AddSeed(const IndexType & seed)
{
m_Seeds.push_back( seed );
this->Modified();
};
/** Set/Get the multiplier to define the confidence interval. Multiplier
* can be anything greater than zero. A typical value is 2.5 */
itkSetMacro(Multiplier, double);
itkGetMacro(Multiplier, double);
/** Set/Get the number of iterations */
itkSetMacro(NumberOfIterations, unsigned int);
itkGetMacro(NumberOfIterations, unsigned int);
/** Set/Get value to replace thresholded pixels */
itkSetMacro(ReplaceValue, OutputImagePixelType);
itkGetMacro(ReplaceValue, OutputImagePixelType);
/** Get/Set the radius of the neighborhood over which the
statistics are evaluated */
itkSetMacro( InitialNeighborhoodRadius, unsigned int );
itkGetConstReferenceMacro( InitialNeighborhoodRadius, unsigned int );
/** Get the Mean Vector computed during the segmentation */
const MeanVectorType & GetMean() const;
/** Get the Covariance matrix computed during the segmentation */
const CovarianceMatrixType & GetCovariance() const;
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(OutputEqualityComparableCheck,
(Concept::EqualityComparable<OutputImagePixelType>));
itkConceptMacro(InputHasNumericTraitsCheck,
(Concept::HasNumericTraits<typename InputImagePixelType::ValueType>));
itkConceptMacro(OutputOStreamWritableCheck,
(Concept::OStreamWritable<OutputImagePixelType>));
/** End concept checking */
#endif
protected:
VectorConfidenceConnectedImageFilter();
// Override since the filter needs all the data for the algorithm
void GenerateInputRequestedRegion();
// Override since the filter produces the entire dataset
void EnlargeOutputRequestedRegion(DataObject *output);
void GenerateData();
private:
VectorConfidenceConnectedImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
SeedsContainerType m_Seeds;
double m_Multiplier;
unsigned int m_NumberOfIterations;
OutputImagePixelType m_ReplaceValue;
unsigned int m_InitialNeighborhoodRadius;
DistanceThresholdFunctionPointer m_ThresholdFunction;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVectorConfidenceConnectedImageFilter.txx"
#endif
#endif
|