File: itkVectorConfidenceConnectedImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (184 lines) | stat: -rw-r--r-- 7,098 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkVectorConfidenceConnectedImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2006-04-03 15:07:52 $
  Version:   $Revision: 1.4 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVectorConfidenceConnectedImageFilter_h
#define __itkVectorConfidenceConnectedImageFilter_h

#include "itkImage.h"
#include "itkImageToImageFilter.h"
#include "itkMahalanobisDistanceThresholdImageFunction.h"

namespace itk{

/** /class VectorConfidenceConnectedImageFilter
 * /brief Segment pixels with similar statistics using connectivity
 *
 * This filter extracts a connected set of pixels whose pixel
 * intensities are consistent with the pixel statistics of a seed
 * point. The mean and variance across a neighborhood (8-connected,
 * 26-connected, etc.) are calculated for a seed point.  Then
 * pixels connected to this seed point whose values are within
 * the confidence interval for the seed point are grouped. The
 * width of the confidence interval is controlled by the "Multiplier"
 * variable (the confidence interval is the mean plus or minus
 * the "Multiplier" times the standard deviation). If the intensity
 * variations across a segment were gaussian, a "Multiplier" setting
 * of 2.5 would define a confidence interval wide enough to capture
 * 99% of samples in the segment.
 *
 * After this initial segmentation is calculated, the mean and
 * variance are re-calculated. All the pixels in the previous
 * segmentation are used to calculate the mean the standard deviation
 * (as opposed to using the pixels in the neighborhood of the seed
 * point).  The segmentation is then recalculted using these refined
 * estimates for the mean and variance of the pixel values.  This
 * process is repeated for the specified number of iterations.
 * Setting the "NumberOfIterations" to zero stops the algorithm
 * after the initial segmentation from the seed point.
 *
 * NOTE: the lower and upper threshold are restricted to lie within the
 * valid numeric limits of the input data pixel type. Also, the limits
 * may be adjusted to contain the seed point's intensity.
 * \ingroup RegionGrowingSegmentation
 */
template <class TInputImage, class TOutputImage>
class ITK_EXPORT VectorConfidenceConnectedImageFilter:
    public ImageToImageFilter<TInputImage,TOutputImage>
{
public:
  /** Standard class typedefs. */
  typedef VectorConfidenceConnectedImageFilter Self;
  typedef ImageToImageFilter<TInputImage,TOutputImage> Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods).  */
  itkTypeMacro(VectorConfidenceConnectedImageFilter,
               ImageToImageFilter);

  typedef TInputImage InputImageType;
  typedef typename InputImageType::Pointer      InputImagePointer;
  typedef typename InputImageType::RegionType   InputImageRegionType; 
  typedef typename InputImageType::PixelType    InputImagePixelType; 
  typedef typename InputImageType::IndexType    IndexType;
  typedef typename InputImageType::SizeType     SizeType;
  
  typedef TOutputImage OutputImageType;
  typedef typename OutputImageType::Pointer     OutputImagePointer;
  typedef typename OutputImageType::RegionType  OutputImageRegionType; 
  typedef typename OutputImageType::PixelType   OutputImagePixelType; 
  
  typedef std::vector< IndexType >              SeedsContainerType;

  typedef MahalanobisDistanceThresholdImageFunction<
                                           InputImageType >
                                                DistanceThresholdFunctionType;
  
  typedef typename DistanceThresholdFunctionType::CovarianceMatrixType CovarianceMatrixType; 
  typedef typename DistanceThresholdFunctionType::MeanVectorType       MeanVectorType;


  typedef  typename DistanceThresholdFunctionType::Pointer DistanceThresholdFunctionPointer;

  void PrintSelf ( std::ostream& os, Indent indent ) const;

  /** Set seed point. This method is deprecated, please use AddSeed() */
  void SetSeed(const IndexType & seed)
  {
    m_Seeds.clear();
    this->AddSeed( seed );
  };


  /** Add seed point. */
  void AddSeed(const IndexType & seed)
  {
    m_Seeds.push_back( seed );
    this->Modified();
  };

  /** Set/Get the multiplier to define the confidence interval.  Multiplier
   * can be anything greater than zero. A typical value is 2.5 */
  itkSetMacro(Multiplier, double);
  itkGetMacro(Multiplier, double);

  /** Set/Get the number of iterations */
  itkSetMacro(NumberOfIterations, unsigned int);
  itkGetMacro(NumberOfIterations, unsigned int);

  /** Set/Get value to replace thresholded pixels */
  itkSetMacro(ReplaceValue, OutputImagePixelType);
  itkGetMacro(ReplaceValue, OutputImagePixelType);

  /** Get/Set the radius of the neighborhood over which the
      statistics are evaluated */
  itkSetMacro( InitialNeighborhoodRadius, unsigned int );
  itkGetConstReferenceMacro( InitialNeighborhoodRadius, unsigned int );

  /** Get the Mean Vector computed during the segmentation */
  const MeanVectorType & GetMean() const;

  /** Get the Covariance matrix computed during the segmentation */
  const CovarianceMatrixType & GetCovariance() const;

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(OutputEqualityComparableCheck,
    (Concept::EqualityComparable<OutputImagePixelType>));
  itkConceptMacro(InputHasNumericTraitsCheck,
    (Concept::HasNumericTraits<typename InputImagePixelType::ValueType>));
  itkConceptMacro(OutputOStreamWritableCheck,
    (Concept::OStreamWritable<OutputImagePixelType>));
  /** End concept checking */
#endif

protected:
  VectorConfidenceConnectedImageFilter();
  
  
  // Override since the filter needs all the data for the algorithm
  void GenerateInputRequestedRegion();

  // Override since the filter produces the entire dataset
  void EnlargeOutputRequestedRegion(DataObject *output);

  void GenerateData();
  
private:
  VectorConfidenceConnectedImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  SeedsContainerType      m_Seeds;
  double                  m_Multiplier;
  unsigned int            m_NumberOfIterations;
  OutputImagePixelType    m_ReplaceValue;
  unsigned int            m_InitialNeighborhoodRadius;
  
  DistanceThresholdFunctionPointer      m_ThresholdFunction;

};


} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVectorConfidenceConnectedImageFilter.txx"
#endif

#endif