1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVectorConfidenceConnectedImageFilter.txx,v $
Language: C++
Date: $Date: 2008-01-18 20:07:32 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorConfidenceConnectedImageFilter_txx_
#define __itkVectorConfidenceConnectedImageFilter_txx_
#include "itkVectorConfidenceConnectedImageFilter.h"
#include "itkExceptionObject.h"
#include "itkImageRegionIterator.h"
#include "itkVectorMeanImageFunction.h"
#include "itkCovarianceImageFunction.h"
#include "itkBinaryThresholdImageFunction.h"
#include "itkFloodFilledImageFunctionConditionalIterator.h"
#include "itkFloodFilledImageFunctionConditionalConstIterator.h"
#include "itkNumericTraits.h"
#include "itkNumericTraitsRGBPixel.h"
#include "itkProgressReporter.h"
namespace itk
{
/**
* Constructor
*/
template <class TInputImage, class TOutputImage>
VectorConfidenceConnectedImageFilter<TInputImage, TOutputImage>
::VectorConfidenceConnectedImageFilter()
{
m_Multiplier = 2.5;
m_NumberOfIterations = 4;
m_Seeds.clear();
m_InitialNeighborhoodRadius = 1;
m_ReplaceValue = NumericTraits<OutputImagePixelType>::One;
m_ThresholdFunction = DistanceThresholdFunctionType::New();
}
/**
* Standard PrintSelf method.
*/
template <class TInputImage, class TOutputImage>
void
VectorConfidenceConnectedImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Number of iterations: " << m_NumberOfIterations
<< std::endl;
os << indent << "Multiplier for confidence interval: " << m_Multiplier
<< std::endl;
os << indent << "ReplaceValue: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ReplaceValue)
<< std::endl;
os << indent << "InitialNeighborhoodRadius: " << m_InitialNeighborhoodRadius
<< std::endl;
}
template <class TInputImage, class TOutputImage>
void
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion()
{
Superclass::GenerateInputRequestedRegion();
if ( this->GetInput() )
{
InputImagePointer input =
const_cast< TInputImage * >( this->GetInput() );
input->SetRequestedRegionToLargestPossibleRegion();
}
}
template <class TInputImage, class TOutputImage>
void
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
Superclass::EnlargeOutputRequestedRegion(output);
output->SetRequestedRegionToLargestPossibleRegion();
}
template <class TInputImage, class TOutputImage>
void
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>
::GenerateData()
{
typedef typename InputImageType::PixelType InputPixelType;
typedef BinaryThresholdImageFunction<OutputImageType> SecondFunctionType;
typedef FloodFilledImageFunctionConditionalIterator<OutputImageType, DistanceThresholdFunctionType> IteratorType;
typedef FloodFilledImageFunctionConditionalConstIterator<InputImageType, SecondFunctionType> SecondIteratorType;
unsigned int loop;
typename Superclass::InputImageConstPointer inputImage = this->GetInput();
typename Superclass::OutputImagePointer outputImage = this->GetOutput();
// Zero the output
OutputImageRegionType region = outputImage->GetRequestedRegion();
outputImage->SetBufferedRegion( region );
outputImage->Allocate();
outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
// Compute the statistics of the seed point
typedef VectorMeanImageFunction<InputImageType> VectorMeanImageFunctionType;
typename VectorMeanImageFunctionType::Pointer meanFunction
= VectorMeanImageFunctionType::New();
meanFunction->SetInputImage( inputImage );
meanFunction->SetNeighborhoodRadius( m_InitialNeighborhoodRadius );
typedef CovarianceImageFunction<InputImageType> CovarianceImageFunctionType;
typename CovarianceImageFunctionType::Pointer varianceFunction
= CovarianceImageFunctionType::New();
varianceFunction->SetInputImage( inputImage );
varianceFunction->SetNeighborhoodRadius( m_InitialNeighborhoodRadius );
// Set up the image function used for connectivity
m_ThresholdFunction->SetInputImage ( inputImage );
CovarianceMatrixType covariance;
MeanVectorType mean;
typedef typename InputPixelType::ValueType ComponentPixelType;
typedef typename NumericTraits< ComponentPixelType >::RealType ComponentRealType;
const unsigned int dimension = InputPixelType::Dimension;
covariance = CovarianceMatrixType( dimension, dimension );
mean = MeanVectorType( dimension );
covariance.fill( NumericTraits<ComponentRealType>::Zero );
mean.fill( NumericTraits<ComponentRealType>::Zero );
typedef typename VectorMeanImageFunctionType::OutputType MeanFunctionVectorType;
typedef typename CovarianceImageFunctionType::OutputType CovarianceFunctionMatrixType;
typename SeedsContainerType::const_iterator si = m_Seeds.begin();
typename SeedsContainerType::const_iterator li = m_Seeds.end();
while( si != li )
{
const MeanFunctionVectorType meanContribution = meanFunction->EvaluateAtIndex( *si );
const CovarianceFunctionMatrixType covarianceContribution = varianceFunction->EvaluateAtIndex( *si );
for(unsigned int ii=0; ii < dimension; ii++)
{
mean[ ii ] += meanContribution[ ii ];
for(unsigned int jj=0; jj < dimension; jj++)
{
covariance[ ii ][ jj ] += covarianceContribution[ ii ][ jj ];
}
}
si++;
}
for(unsigned int ik=0; ik < dimension; ik++)
{
mean[ ik ] /= m_Seeds.size();
for(unsigned int jk=0; jk < dimension; jk++)
{
covariance[ ik ][ jk ] /= m_Seeds.size();
}
}
m_ThresholdFunction->SetMean( mean );
m_ThresholdFunction->SetCovariance( covariance );
m_ThresholdFunction->SetThreshold( m_Multiplier );
itkDebugMacro(<< "\nMultiplier originally = " << m_Multiplier );
// Make sure that the multiplier is large enough to include the seed points themselves.
// This is a pragmatic fix, but a questionable practice because it means that the actual
// region may be grown using a multiplier different from the one specified by the user.
si = m_Seeds.begin();
li = m_Seeds.end();
while( si != li )
{
const double distance =
m_ThresholdFunction->EvaluateDistanceAtIndex( *si );
if( distance > m_Multiplier )
{
m_Multiplier = distance;
}
si++;
}
// Finally setup the eventually modified multiplier. That is actually the threshold itself.
m_ThresholdFunction->SetThreshold( m_Multiplier );
itkDebugMacro(<< "\nMultiplier after verifying seeds inclusion = " << m_Multiplier );
// Segment the image, the iterator walks the output image (so Set()
// writes into the output image), starting at the seed point. As
// the iterator walks, if the corresponding pixel in the input image
// (accessed via the "m_ThresholdFunction" assigned to the iterator) is within
// the [lower, upper] bounds prescribed, the pixel is added to the
// output segmentation and its neighbors become candidates for the
// iterator to walk.
IteratorType it = IteratorType ( outputImage, m_ThresholdFunction, m_Seeds );
it.GoToBegin();
while( !it.IsAtEnd())
{
it.Set(m_ReplaceValue);
++it;
}
ProgressReporter progress(this, 0, region.GetNumberOfPixels() * m_NumberOfIterations );
for (loop = 0; loop < m_NumberOfIterations; ++loop)
{
// Now that we have an initial segmentation, let's recalculate the
// statistics. Since we have already labelled the output, we visit
// pixels in the input image that have been set in the output image.
// Essentially, we flip the iterator around, so we walk the input
// image (so Get() will get pixel values from the input) and constrain
// iterator such it only visits pixels that were set in the output.
typename SecondFunctionType::Pointer secondFunction = SecondFunctionType::New();
secondFunction->SetInputImage ( outputImage );
secondFunction->ThresholdBetween( m_ReplaceValue, m_ReplaceValue );
covariance = CovarianceMatrixType( dimension, dimension );
mean = MeanVectorType( dimension );
covariance.fill( NumericTraits<ComponentRealType>::Zero );
mean.fill( NumericTraits<ComponentRealType>::Zero );
unsigned long num = 0;
SecondIteratorType sit
= SecondIteratorType ( inputImage, secondFunction, m_Seeds );
sit.GoToBegin();
while( !sit.IsAtEnd())
{
const InputPixelType pixelValue = sit.Get();
for(unsigned int i=0; i<dimension; i++)
{
const ComponentRealType pixelValueI = static_cast<ComponentRealType>( pixelValue[i] );
covariance[i][i] += pixelValueI * pixelValueI;
mean[i] += pixelValueI;
for(unsigned int j=i+1; j<dimension; j++)
{
const ComponentRealType pixelValueJ = static_cast<ComponentRealType>( pixelValue[j] );
const ComponentRealType product = pixelValueI * pixelValueJ;
covariance[i][j] += product;
covariance[j][i] += product;
}
}
++num;
++sit;
}
for(unsigned int ii=0; ii<dimension; ii++)
{
mean[ii] /= static_cast<double>(num);
for(unsigned int jj=0; jj<dimension; jj++)
{
covariance[ii][jj] /= static_cast<double>(num);
}
}
for(unsigned int ik=0; ik<dimension; ik++)
{
for(unsigned int jk=0; jk<dimension; jk++)
{
covariance[ik][jk] -= mean[ik] * mean[jk];
}
}
m_ThresholdFunction->SetMean( mean );
m_ThresholdFunction->SetCovariance( covariance );
// Rerun the segmentation, the iterator walks the output image,
// starting at the seed point. As the iterator walks, if the
// corresponding pixel in the input image (accessed via the
// "m_ThresholdFunction" assigned to the iterator) is within the [lower,
// upper] bounds prescribed, the pixel is added to the output
// segmentation and its neighbors become candidates for the
// iterator to walk.
outputImage->FillBuffer ( NumericTraits<OutputImagePixelType>::Zero );
IteratorType thirdIt = IteratorType ( outputImage, m_ThresholdFunction, m_Seeds );
thirdIt.GoToBegin();
try
{
while( !thirdIt.IsAtEnd())
{
thirdIt.Set(m_ReplaceValue);
++thirdIt;
progress.CompletedPixel(); // potential exception thrown here
}
}
catch( ProcessAborted & )
{
break; // interrupt the iterations loop
}
} // end iteration loop
if( this->GetAbortGenerateData() )
{
ProcessAborted e(__FILE__,__LINE__);
e.SetDescription("Process aborted.");
e.SetLocation(ITK_LOCATION);
throw e;
}
}
template <class TInputImage, class TOutputImage>
const typename
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>::CovarianceMatrixType &
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>
::GetCovariance() const
{
return m_ThresholdFunction->GetCovariance();
}
template <class TInputImage, class TOutputImage>
const typename
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>::MeanVectorType &
VectorConfidenceConnectedImageFilter<TInputImage,TOutputImage>
::GetMean() const
{
return m_ThresholdFunction->GetMean();
}
} // end namespace itk
#endif
|