1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVectorGradientMagnitudeImageFilter.h,v $
Language: C++
Date: $Date: 2006-04-03 15:07:52 $
Version: $Revision: 1.12 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorGradientMagnitudeImageFilter_h
#define __itkVectorGradientMagnitudeImageFilter_h
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_vector_fixed.h"
#include "vnl/algo/vnl_symmetric_eigensystem.h"
#include "vnl/vnl_math.h"
namespace itk
{
/** \class VectorGradientMagnitudeImageFilter
*
* \brief Computes a scalar, gradient magnitude image from a multiple channel
* (pixels are vectors) input.
*
* \par Overview
* This filter has two calculation modes. The first (default) mode calculates
* gradient magnitude as the difference between the largest two eigenvalues in a
* principle component analysis of the partial derivatives [1]. The
* gradient is then based on the direction of maximal change, and is a
* characterization of how "elongated" the point-spread of the analysis is
* found to be.
*
* The second, more heuristic, calculation mode finds gradient magnitude as the
* square-root of the sum of the * individual weighted vector component
* derivative sums squared. That is, * \f$ \mathbf{magnitude} = \left(
* \sum_{i=0}^n \sum_{j=0}^m \frac{\delta * \phi_j}{\delta \mathbf{x}_{i}}^2
* \right)^{\frac{1}{2}} \f$, where \f$\phi_j\f$ * is the \f$j^{\mathbf{th}}\f$
* channel of vector image \f$\phi\f$ of dimension \f$n\f$. * Weighting terms
* are applied to each vector component.
*
* The second mode is computationally much faster than the first and has the
* advantage that it is automatically multi-threaded (some vnl functions used
* in the first mode are not thread-safe). The first mode, however, tends to
* give intuitively better results with less (or no) parameter tuning.
*
* \par Template Parameters (Input and Output)
* This filter has one required template parameter which defines the input
* image type. The pixel type of the input image is assumed to be a vector
* (e.g., itk::Vector, itk::RGBPixel, itk::FixedArray). The scalar type of the
* vector components must be castable to floating point. Instantiating with an
* image of RGBPixel<unsigned short>, for example, is allowed, but the filter
* will convert it to an image of Vector<float,3> for processing.
*
* The second template parameter, TRealType, can be optionally specified to define the
* scalar numerical type used in calculations. This is the component type of
* the output image, which will be of itk::Vector<TRealType, N>, where N is the
* number of channels in the multiple component input image. The default type
* of TRealType is float. For extra precision, you may safely change this
* parameter to double.
*
* The third template parameter is the output image type. The third parameter
* will be automatically constructed from the first and second parameters, so
* it is not necessary (or advisable) to set this parameter explicitly. Given
* an M-channel input image with dimensionality N, and a numerical type
* specified as TRealType, the output image will be of type
* itk::Image<itk::Vector<TRealType, M>, N>.
*
* \par Filter Parameters
* The methods Set/GetUsePrincipleComponents and
* SetUsePrincipleComponentsOn/Off determine controls the calculation mode that
* is used.
*
* The method SetUseImageSpacingOn will cause derivatives in the image to be
* scaled (inversely) with the pixel size of the input image, effectively
* taking derivatives in world coordinates (versus isotropic image
* space). SetUseImageSpacingOff turns this functionality off. Default is
* UseImageSpacingOff (all weights are 1.0). The parameter UseImageSpacing can
* be set directly with the method SetUseImageSpacing(bool).
*
* Weights can be applied to the derivatives directly using the
* SetDerivativeWeights method. Note that if UseImageSpacing is set to TRUE
* (ON), then these weights will be overridden by weights derived from the
* image spacing when the filter is updated. The argument to this method is a
* C array of TRealValue type.
*
* Weights
* can be applied to each vector component of the image when the component
* derivative values are summed during computation. Specify these weights
* using the SetComponentWeights method. The argument to this method is a C
* array of TRealValue type.
* \par Constraints
* The filter requires an image with at least two dimensions and a vector
* length of at least 2. The theory supports extension to scalar images, but
* the implementation of the itk vector classes do not
*
* The template parameter TRealType must be floating point (float or double) or
* a user-defined "real" numerical type with arithmetic operations defined
* sufficient to compute derivatives.
*
* \par Performance
* This filter will automatically multithread if run with
* SetUsePrincipleComponents=Off or on 3D data in UsePrincipleComponents=On
* mode. Unfortunately the ND eigen solver used is not thread safe (a special
* 3D solver is), so it cannot multithread for data other than 3D in
* UsePrincipleComponents=On mode.
*
* \par References
*
* [1] G. Sapiro and D. Ringach, "Anisotropic Diffusion of Multivalued Images
* with Application to Color Filtering," IEEE Transactions on Image Processing,
* Vol 5, No. 11 pp. 1582-1586, 1996
* \ingroup GradientFilters
*
* \sa Image
* \sa Neighborhood
* \sa NeighborhoodOperator
* \sa NeighborhoodIterator
*/
template < typename TInputImage,
typename TRealType = float,
typename TOutputImage = Image< TRealType,
::itk::GetImageDimension<TInputImage>::ImageDimension >
>
class ITK_EXPORT VectorGradientMagnitudeImageFilter :
public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
/** Standard class typedefs. */
typedef VectorGradientMagnitudeImageFilter Self;
typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro(VectorGradientMagnitudeImageFilter, ImageToImageFilter);
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
typedef typename TOutputImage::PixelType OutputPixelType;
typedef typename TInputImage::PixelType InputPixelType;
/** Image typedef support */
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename OutputImageType::Pointer OutputImagePointer;
/** The dimensionality of the input and output images. */
itkStaticConstMacro(ImageDimension, unsigned int,
TOutputImage::ImageDimension);
/** Length of the vector pixel type of the input image. */
itkStaticConstMacro(VectorDimension, unsigned int,
InputPixelType::Dimension);
/** Define the data type and the vector of data type used in calculations. */
typedef TRealType RealType;
typedef Vector<TRealType, ::itk::GetVectorDimension<InputPixelType>::VectorDimension> RealVectorType;
typedef Image<RealVectorType, ::itk::GetImageDimension<TInputImage>::ImageDimension> RealVectorImageType;
/** Type of the iterator that will be used to move through the image. Also
the type which will be passed to the evaluate function */
typedef ConstNeighborhoodIterator<RealVectorImageType> ConstNeighborhoodIteratorType;
typedef typename ConstNeighborhoodIteratorType::RadiusType RadiusType;
/** Superclass typedefs. */
typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
/** VectorGradientMagnitudeImageFilter needs a larger input requested
* region than the output requested region (larger by the kernel
* size to calculate derivatives). As such,
* VectorGradientMagnitudeImageFilter needs to provide an implementation
* for GenerateInputRequestedRegion() in order to inform the
* pipeline execution model.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);
/** Set the derivative weights according to the spacing of the input image
(1/spacing). Use this option if you want to calculate the gradient in the
space in which the data was acquired.*/
void SetUseImageSpacingOn()
{ this->SetUseImageSpacing(true); }
/** Reset the derivative weights to ignore image spacing. Use this option if
you want to calculate the gradient in the image space. Default is
ImageSpacingOff. */
void SetUseImageSpacingOff()
{ this->SetUseImageSpacing(false); }
/** Set/Get whether or not the filter will use the spacing of the input
image in its calculations */
void SetUseImageSpacing(bool);
itkGetMacro(UseImageSpacing, bool);
/** Directly Set/Get the array of weights used in the gradient calculations.
Note that calling UseImageSpacingOn will clobber these values.*/
void SetDerivativeWeights(TRealType data[]);
itkGetVectorMacro(DerivativeWeights, const TRealType, itk::GetImageDimension<TInputImage>::ImageDimension);
/** Set/Get the array of weightings for the different components of the
vector. Default values are 1.0. */
itkSetVectorMacro(ComponentWeights, TRealType, itk::GetVectorDimension<InputPixelType>::VectorDimension);
itkGetVectorMacro(ComponentWeights, const TRealType, itk::GetVectorDimension<InputPixelType>::VectorDimension);
/** Set/Get principle components calculation mode. When this is set to TRUE/ON,
the gradient calculation will involve a priniciple component analysis of
the partial derivatives of the color components. When this value is set
to FALSE/OFF, the calculation is done as a square root of weighted sum of the
derivatives squared. Default is UsePrincipleComponents = true. */
itkSetMacro(UsePrincipleComponents, bool);
itkGetMacro(UsePrincipleComponents, bool);
void SetUsePrincipleComponentsOn()
{
this->SetUsePrincipleComponents(true);
}
void SetUsePrincipleComponentsOff()
{
this->SetUsePrincipleComponents(false);
}
/** A specialized solver for finding the roots of a cubic polynomial.
* Necessary to multi-thread the 3D case */
static int CubicSolver(double *, double *);
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputHasNumericTraitsCheck,
(Concept::HasNumericTraits<typename InputPixelType::ValueType>));
itkConceptMacro(RealTypeHasNumericTraitsCheck,
(Concept::HasNumericTraits<RealType>));
/** End concept checking */
#endif
protected:
VectorGradientMagnitudeImageFilter();
virtual ~VectorGradientMagnitudeImageFilter() {}
/** Do any necessary casting/copying of the input data. Input pixel types
whose value types are not real number types must be cast to real number
types.*/
void BeforeThreadedGenerateData ();
/** VectorGradientMagnitudeImageFilter can be implemented as a
* multithreaded filter. Therefore, this implementation provides a
* ThreadedGenerateData() routine which is called for each
* processing thread. The output image data is allocated
* automatically by the superclass prior to calling
* ThreadedGenerateData(). ThreadedGenerateData can only write to
* the portion of the output image specified by the parameter
* "outputRegionForThread"
*
* \sa ImageToImageFilter::ThreadedGenerateData(),
* ImageToImageFilter::GenerateData() */
void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
int threadId );
void PrintSelf(std::ostream& os, Indent indent) const;
typedef typename InputImageType::Superclass ImageBaseType;
/** Get access to the input image casted as real pixel values */
itkGetConstObjectMacro( RealValuedInputImage, ImageBaseType );
/** Get/Set the neighborhood radius used for gradient computation */
itkGetConstReferenceMacro( NeighborhoodRadius, RadiusType );
itkSetMacro( NeighborhoodRadius, RadiusType );
TRealType NonPCEvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
{
unsigned i, j;
TRealType dx, sum, accum;
accum = NumericTraits<TRealType>::Zero;
for (i = 0; i < ImageDimension; ++i)
{
sum = NumericTraits<TRealType>::Zero;
for (j = 0; j < VectorDimension; ++j)
{
dx = m_DerivativeWeights[i] * m_SqrtComponentWeights[j]
* 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]);
sum += dx * dx;
}
accum += sum;
}
return vcl_sqrt(accum);
}
TRealType EvaluateAtNeighborhood3D(const ConstNeighborhoodIteratorType &it) const
{
// WARNING: ONLY CALL THIS METHOD WHEN PROCESSING A 3D IMAGE
unsigned int i, j;
double Lambda[3];
double CharEqn[3];
double ans;
vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
vnl_vector_fixed<TRealType, VectorDimension>
d_phi_du[itk::GetImageDimension<TInputImage>::ImageDimension];
// Calculate the directional derivatives for each vector component using
// central differences.
for (i = 0; i < ImageDimension; i++)
{
for (j = 0; j < VectorDimension; j++)
{ d_phi_du[i][j] = m_DerivativeWeights[i] * m_SqrtComponentWeights[j]
* 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]); }
}
// Calculate the symmetric metric tensor g
for (i = 0; i < ImageDimension; i++)
{
for (j = i; j < ImageDimension; j++)
{
g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
}
}
// Find the coefficients of the characteristic equation det(g - lambda I)=0
// CharEqn[3] = 1.0;
CharEqn[2] = -( g[0][0] + g[1][1] + g[2][2] );
CharEqn[1] =(g[0][0]*g[1][1] + g[0][0]*g[2][2] + g[1][1]*g[2][2])
- (g[0][1]*g[1][0] + g[0][2]*g[2][0] + g[1][2]*g[2][1]);
CharEqn[0] = g[0][0] * ( g[1][2]*g[2][1] - g[1][1]*g[2][2] ) +
g[1][0] * ( g[2][2]*g[0][1] - g[0][2]*g[2][1] ) +
g[2][0] * ( g[1][1]*g[0][2] - g[0][1]*g[1][2] );
//(g[0][0]*g[1][2]*g[2][1] + g[1][1]*g[0][2]*g[2][0] + g[2][2]*g[0][1]*g[1][0])
// - (g[0][0]*g[1][1]*g[2][2] + g[0][1]*g[2][0]*g[1][2] + g[0][2]*g[1][0]*g[2][1]);
// Find the eigenvalues of g
int numberOfDistinctRoots = this->CubicSolver(CharEqn, Lambda);
// Define gradient magnitude as the difference between two largest
// eigenvalues. Other definitions may be appropriate here as well.
if (numberOfDistinctRoots == 3) // By far the most common case
{
if (Lambda[0] > Lambda[1])
{
if ( Lambda[1] > Lambda[2] )
{ ans = Lambda[0] - Lambda[1]; } // Most common, guaranteed?
else
{
if ( Lambda[0] > Lambda[2] )
{ ans = Lambda[0] - Lambda[2]; }
else
{ ans = Lambda[2] - Lambda[0]; }
}
}
else
{
if ( Lambda[0] > Lambda[2] )
{ ans = Lambda[1] - Lambda[0]; }
else
{
if ( Lambda[1] > Lambda[2] )
{ ans = Lambda[1] - Lambda[2]; }
else
{ ans = Lambda[2] - Lambda[1]; }
}
}
}
else if (numberOfDistinctRoots == 2)
{
if ( Lambda[0] > Lambda[1] )
{ ans = Lambda[0] - Lambda[1]; }
else
{ ans = Lambda[1] - Lambda[0]; }
}
else if (numberOfDistinctRoots == 1)
{
ans = 0.0;
}
else
{
itkExceptionMacro( << "Undefined condition. Cubic root solver returned "
<< numberOfDistinctRoots << " distinct roots." );
}
return ans;
}
// Function is defined here because the templating confuses gcc 2.96 when defined
// in .txx file. jc 1/29/03
TRealType EvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
{
unsigned int i, j;
vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
vnl_vector_fixed<TRealType, VectorDimension>
d_phi_du[itk::GetImageDimension<TInputImage>::ImageDimension];
// Calculate the directional derivatives for each vector component using
// central differences.
for (i = 0; i < ImageDimension; i++)
{
for (j = 0; j < VectorDimension; j++)
{ d_phi_du[i][j] = m_DerivativeWeights[i] * m_SqrtComponentWeights[j]
* 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j] ); }
}
// Calculate the symmetric metric tensor g
for (i = 0; i < ImageDimension; i++)
{
for (j = i; j < ImageDimension; j++)
{
g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
}
}
// Find the eigenvalues of g
vnl_symmetric_eigensystem<TRealType> E(g);
// Return the difference in length between the first two principle axes.
// Note that other edge strength metrics may be appropriate here instead..
return ( E.get_eigenvalue(ImageDimension - 1) - E.get_eigenvalue(ImageDimension - 2) );
}
/** The weights used to scale derivatives during processing */
TRealType m_DerivativeWeights[itk::GetImageDimension<TInputImage>::ImageDimension];
/** These weights are used to scale
vector component values when they are combined to produce a scalar. The
square roon*/
TRealType m_ComponentWeights[itk::GetVectorDimension<InputPixelType>::VectorDimension];
TRealType m_SqrtComponentWeights[itk::GetVectorDimension<InputPixelType>::VectorDimension];
private:
bool m_UseImageSpacing;
bool m_UsePrincipleComponents;
int m_RequestedNumberOfThreads;
typename ImageBaseType::ConstPointer m_RealValuedInputImage;
VectorGradientMagnitudeImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
RadiusType m_NeighborhoodRadius;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVectorGradientMagnitudeImageFilter.txx"
#endif
#endif
|