File: itkVectorGradientMagnitudeImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (468 lines) | stat: -rw-r--r-- 19,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkVectorGradientMagnitudeImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2006-04-03 15:07:52 $
  Version:   $Revision: 1.12 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVectorGradientMagnitudeImageFilter_h
#define __itkVectorGradientMagnitudeImageFilter_h

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_vector_fixed.h"
#include "vnl/algo/vnl_symmetric_eigensystem.h"
#include "vnl/vnl_math.h"

namespace itk
{
/** \class VectorGradientMagnitudeImageFilter
 *
 * \brief Computes a scalar, gradient magnitude image from a multiple channel
 * (pixels are vectors) input.
 * 
 * \par Overview
 * This filter has two calculation modes.  The first (default) mode calculates
 * gradient magnitude as the difference between the largest two eigenvalues in a
 * principle component analysis of the partial derivatives [1].  The
 * gradient is then based on the direction of maximal change, and is a
 * characterization of how "elongated" the point-spread of the analysis is
 * found to be.
 * 
 * The second, more heuristic, calculation mode finds gradient magnitude as the
 * square-root of the sum of the * individual weighted vector component
 * derivative sums squared. That is, * \f$ \mathbf{magnitude} = \left(
 * \sum_{i=0}^n \sum_{j=0}^m \frac{\delta * \phi_j}{\delta \mathbf{x}_{i}}^2
 * \right)^{\frac{1}{2}} \f$, where \f$\phi_j\f$ * is the \f$j^{\mathbf{th}}\f$
 * channel of vector image \f$\phi\f$ of dimension \f$n\f$. * Weighting terms
 * are applied to each vector component.
 *
 * The second mode is computationally much faster than the first and has the
 * advantage that it is automatically multi-threaded (some vnl functions used
 * in the first mode are not thread-safe).  The first mode, however, tends to
 * give intuitively better results with less (or no) parameter tuning.
 *
 * \par Template Parameters (Input and Output)
 * This filter has one required template parameter which defines the input
 * image type.  The pixel type of the input image is assumed to be a vector
 * (e.g., itk::Vector, itk::RGBPixel, itk::FixedArray).  The scalar type of the
 * vector components must be castable to floating point.  Instantiating with an
 * image of RGBPixel<unsigned short>, for example, is allowed, but the filter
 * will convert it to an image of Vector<float,3> for processing.
 *
 * The second template parameter, TRealType, can be optionally specified to define the
 * scalar numerical type used in calculations.  This is the component type of
 * the output image, which will be of itk::Vector<TRealType, N>, where N is the
 * number of channels in the multiple component input image.  The default type
 * of TRealType is float.  For extra precision, you may safely change this
 * parameter to double.
 *
 * The third template parameter is the output image type.  The third parameter
 * will be automatically constructed from the first and second parameters, so
 * it is not necessary (or advisable) to set this parameter explicitly.  Given
 * an M-channel input image with dimensionality N, and a numerical type
 * specified as TRealType, the output image will be of type
 * itk::Image<itk::Vector<TRealType, M>, N>.
 *
 * \par Filter Parameters 
 * The methods Set/GetUsePrincipleComponents and
 * SetUsePrincipleComponentsOn/Off determine controls the calculation mode that
 * is used.
 *
 * The method SetUseImageSpacingOn will cause derivatives in the image to be
 * scaled (inversely) with the pixel size of the input image, effectively
 * taking derivatives in world coordinates (versus isotropic image
 * space). SetUseImageSpacingOff turns this functionality off.  Default is
 * UseImageSpacingOff (all weights are 1.0).  The parameter UseImageSpacing can
 * be set directly with the method SetUseImageSpacing(bool).
 * 
 * Weights can be applied to the derivatives directly using the
 * SetDerivativeWeights method.  Note that if UseImageSpacing is set to TRUE
 * (ON), then these weights will be overridden by weights derived from the
 * image spacing when the filter is updated.  The argument to this method is a
 * C array of TRealValue type.
 *
 * Weights
 * can be applied to each vector component of the image when the component
 * derivative values are summed during computation.  Specify these weights
 * using the SetComponentWeights method.  The argument to this method is a C
 * array of TRealValue type.
 
 * \par Constraints
 * The filter requires an image with at least two dimensions and a vector
 * length of at least 2.  The theory supports extension to scalar images, but
 * the implementation of the itk vector classes do not
 *
 * The template parameter TRealType must be floating point (float or double) or
 * a user-defined "real" numerical type with arithmetic operations defined
 * sufficient to compute derivatives.
 *
 * \par Performance
 * This filter will automatically multithread if run with
 * SetUsePrincipleComponents=Off or on 3D data in UsePrincipleComponents=On
 * mode.   Unfortunately the ND eigen solver used is not thread safe (a special
 * 3D solver is), so it cannot multithread for data other than 3D in
 * UsePrincipleComponents=On mode.
 *
 * \par References
 * 
 * [1] G. Sapiro and D. Ringach, "Anisotropic Diffusion of Multivalued Images
 * with Application to Color Filtering," IEEE Transactions on Image Processing,
 * Vol 5, No. 11 pp. 1582-1586, 1996
 
 * \ingroup GradientFilters
 *
 * \sa Image
 * \sa Neighborhood
 * \sa NeighborhoodOperator
 * \sa NeighborhoodIterator
 */
template < typename TInputImage,
           typename TRealType = float,
           typename TOutputImage = Image< TRealType,
                                          ::itk::GetImageDimension<TInputImage>::ImageDimension >
>
class ITK_EXPORT VectorGradientMagnitudeImageFilter :
    public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
  /** Standard class typedefs. */
  typedef VectorGradientMagnitudeImageFilter Self;
  typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods) */
  itkTypeMacro(VectorGradientMagnitudeImageFilter, ImageToImageFilter);
  
  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  typedef typename TOutputImage::PixelType OutputPixelType;
  typedef typename TInputImage::PixelType  InputPixelType;

  /** Image typedef support */
  typedef TInputImage  InputImageType;
  typedef TOutputImage OutputImageType;
  typedef typename InputImageType::Pointer  InputImagePointer;
  typedef typename OutputImageType::Pointer OutputImagePointer;
  
  /** The dimensionality of the input and output images. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TOutputImage::ImageDimension);
  
  /** Length of the vector pixel type of the input image. */
  itkStaticConstMacro(VectorDimension, unsigned int,
                      InputPixelType::Dimension);

  /** Define the data type and the vector of data type used in calculations. */
  typedef TRealType RealType;
  typedef Vector<TRealType, ::itk::GetVectorDimension<InputPixelType>::VectorDimension> RealVectorType;
  typedef Image<RealVectorType, ::itk::GetImageDimension<TInputImage>::ImageDimension>  RealVectorImageType;
  

  /** Type of the iterator that will be used to move through the image.  Also
      the type which will be passed to the evaluate function */
  typedef ConstNeighborhoodIterator<RealVectorImageType> ConstNeighborhoodIteratorType;
  typedef typename ConstNeighborhoodIteratorType::RadiusType RadiusType;  
  
  /** Superclass typedefs. */
  typedef typename Superclass::OutputImageRegionType OutputImageRegionType;

  /** VectorGradientMagnitudeImageFilter needs a larger input requested
   * region than the output requested region (larger by the kernel
   * size to calculate derivatives).  As such,
   * VectorGradientMagnitudeImageFilter needs to provide an implementation
   * for GenerateInputRequestedRegion() in order to inform the
   * pipeline execution model.
   *
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);

  /** Set the derivative weights according to the spacing of the input image
      (1/spacing). Use this option if you want to calculate the gradient in the
      space in which the data was acquired.*/
  void SetUseImageSpacingOn()
  { this->SetUseImageSpacing(true); }

  /** Reset the derivative weights to ignore image spacing.  Use this option if
      you want to calculate the gradient in the image space.  Default is
      ImageSpacingOff. */
  void SetUseImageSpacingOff()
  { this->SetUseImageSpacing(false); }

  /** Set/Get whether or not the filter will use the spacing of the input
      image in its calculations */
  void SetUseImageSpacing(bool);                         
  itkGetMacro(UseImageSpacing, bool);

  /** Directly Set/Get the array of weights used in the gradient calculations.
      Note that calling UseImageSpacingOn will clobber these values.*/
  void SetDerivativeWeights(TRealType data[]);
  itkGetVectorMacro(DerivativeWeights, const TRealType, itk::GetImageDimension<TInputImage>::ImageDimension);

  /** Set/Get the array of weightings for the different components of the
      vector.  Default values are 1.0. */
  itkSetVectorMacro(ComponentWeights, TRealType, itk::GetVectorDimension<InputPixelType>::VectorDimension);
  itkGetVectorMacro(ComponentWeights, const TRealType, itk::GetVectorDimension<InputPixelType>::VectorDimension);
  
  /** Set/Get principle components calculation mode.  When this is set to TRUE/ON,
      the gradient calculation will involve a priniciple component analysis of
      the partial derivatives of the color components.  When this value is set
      to FALSE/OFF, the calculation is done as a square root of weighted sum of the
      derivatives squared.  Default is UsePrincipleComponents = true. */
  itkSetMacro(UsePrincipleComponents, bool);
  itkGetMacro(UsePrincipleComponents, bool);
  void SetUsePrincipleComponentsOn()
  {
    this->SetUsePrincipleComponents(true);
  }
  void SetUsePrincipleComponentsOff()
  {
    this->SetUsePrincipleComponents(false);
  }

  /** A specialized solver for finding the roots of a cubic polynomial.
   *  Necessary to multi-thread the 3D case */
  static int CubicSolver(double *, double *);

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(InputHasNumericTraitsCheck,
                  (Concept::HasNumericTraits<typename InputPixelType::ValueType>));
  itkConceptMacro(RealTypeHasNumericTraitsCheck,
                  (Concept::HasNumericTraits<RealType>));
  /** End concept checking */
#endif

protected:
  VectorGradientMagnitudeImageFilter();
  virtual ~VectorGradientMagnitudeImageFilter() {}

  /** Do any necessary casting/copying of the input data.  Input pixel types
     whose value types are not real number types must be cast to real number
     types.*/
  void BeforeThreadedGenerateData ();

  /** VectorGradientMagnitudeImageFilter can be implemented as a
   * multithreaded filter.  Therefore, this implementation provides a
   * ThreadedGenerateData() routine which is called for each
   * processing thread. The output image data is allocated
   * automatically by the superclass prior to calling
   * ThreadedGenerateData().  ThreadedGenerateData can only write to
   * the portion of the output image specified by the parameter
   * "outputRegionForThread"
   *
   * \sa ImageToImageFilter::ThreadedGenerateData(),
   *     ImageToImageFilter::GenerateData() */
  void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
                            int threadId );

  void PrintSelf(std::ostream& os, Indent indent) const;

  typedef typename InputImageType::Superclass ImageBaseType;

  /** Get access to the input image casted as real pixel values */
  itkGetConstObjectMacro( RealValuedInputImage, ImageBaseType );

  /** Get/Set the neighborhood radius used for gradient computation */
  itkGetConstReferenceMacro( NeighborhoodRadius, RadiusType );
  itkSetMacro( NeighborhoodRadius, RadiusType );
  

  TRealType NonPCEvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
  {
    unsigned i, j;
    TRealType dx, sum, accum;
    accum = NumericTraits<TRealType>::Zero;
    for (i = 0; i < ImageDimension; ++i)
      {
      sum = NumericTraits<TRealType>::Zero;
      for (j = 0; j < VectorDimension; ++j)
        {
        dx =  m_DerivativeWeights[i] * m_SqrtComponentWeights[j] 
          * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]);
        sum += dx * dx;
        }
      accum += sum;
      }
    return vcl_sqrt(accum);
  }

  TRealType EvaluateAtNeighborhood3D(const ConstNeighborhoodIteratorType &it) const
  {
    // WARNING:  ONLY CALL THIS METHOD WHEN PROCESSING A 3D IMAGE
    unsigned int i, j;
    double Lambda[3];
    double CharEqn[3];
    double ans;

    vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
    vnl_vector_fixed<TRealType, VectorDimension>
      d_phi_du[itk::GetImageDimension<TInputImage>::ImageDimension];

    // Calculate the directional derivatives for each vector component using
    // central differences.
    for (i = 0; i < ImageDimension; i++)
      {
      for (j = 0; j < VectorDimension; j++)
        {  d_phi_du[i][j] = m_DerivativeWeights[i] * m_SqrtComponentWeights[j]
             * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]); }
      }

    // Calculate the symmetric metric tensor g
    for (i = 0; i < ImageDimension; i++)
      {
      for (j = i; j < ImageDimension; j++)
        {
        g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
        }
      }

    // Find the coefficients of the characteristic equation det(g - lambda I)=0
    //    CharEqn[3] = 1.0;

    CharEqn[2] = -( g[0][0] + g[1][1] + g[2][2] );

    CharEqn[1] =(g[0][0]*g[1][1] + g[0][0]*g[2][2] + g[1][1]*g[2][2])
      - (g[0][1]*g[1][0] + g[0][2]*g[2][0] + g[1][2]*g[2][1]);

    CharEqn[0] = g[0][0] * ( g[1][2]*g[2][1] -  g[1][1]*g[2][2]  ) +
      g[1][0] * (  g[2][2]*g[0][1] - g[0][2]*g[2][1] ) +
      g[2][0] * ( g[1][1]*g[0][2] - g[0][1]*g[1][2] );

    //(g[0][0]*g[1][2]*g[2][1] + g[1][1]*g[0][2]*g[2][0] + g[2][2]*g[0][1]*g[1][0])
    //      - (g[0][0]*g[1][1]*g[2][2] + g[0][1]*g[2][0]*g[1][2] + g[0][2]*g[1][0]*g[2][1]);
    
    // Find the eigenvalues of g
    int numberOfDistinctRoots =  this->CubicSolver(CharEqn, Lambda);

    // Define gradient magnitude as the difference between two largest
    // eigenvalues.  Other definitions may be appropriate here as well.
    if (numberOfDistinctRoots == 3) // By far the most common case
      {
      if (Lambda[0] > Lambda[1])
        {
        if ( Lambda[1] > Lambda[2] )
          {  ans = Lambda[0] - Lambda[1]; } // Most common, guaranteed?
        else
          {
          if ( Lambda[0] > Lambda[2] )
            { ans = Lambda[0] - Lambda[2]; }
          else
            { ans = Lambda[2] - Lambda[0]; }
          }
        }
      else
        {
        if ( Lambda[0] > Lambda[2] )
          { ans = Lambda[1] - Lambda[0]; }
        else
          {
          if ( Lambda[1] > Lambda[2] )
            { ans = Lambda[1] - Lambda[2]; }
          else
            { ans = Lambda[2] - Lambda[1]; }
          }            
        }
      }
    else if (numberOfDistinctRoots == 2)
      {
      if ( Lambda[0] > Lambda[1] )
        { ans = Lambda[0] - Lambda[1]; }
      else
        { ans = Lambda[1] - Lambda[0]; }
      }
    else if (numberOfDistinctRoots == 1)
      {
      ans = 0.0;
      }
    else
      {
      itkExceptionMacro( << "Undefined condition. Cubic root solver returned "
                         << numberOfDistinctRoots << " distinct roots." );
      }

    return ans;  
  }
  
  // Function is defined here because the templating confuses gcc 2.96 when defined
  // in .txx file.  jc 1/29/03
  TRealType EvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
  {
    unsigned int i, j;
    vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
    vnl_vector_fixed<TRealType, VectorDimension>
      d_phi_du[itk::GetImageDimension<TInputImage>::ImageDimension];
    
    // Calculate the directional derivatives for each vector component using
    // central differences.
    for (i = 0; i < ImageDimension; i++)
      {
      for (j = 0; j < VectorDimension; j++)
        {  d_phi_du[i][j] = m_DerivativeWeights[i] * m_SqrtComponentWeights[j]
             * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j] ); }
      }
    
    // Calculate the symmetric metric tensor g
    for (i = 0; i < ImageDimension; i++)
      {
      for (j = i; j < ImageDimension; j++)
        {
        g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
        }
      }
    
    // Find the eigenvalues of g
    vnl_symmetric_eigensystem<TRealType> E(g);

    // Return the difference in length between the first two principle axes.
    // Note that other edge strength metrics may be appropriate here instead..
    return ( E.get_eigenvalue(ImageDimension - 1) - E.get_eigenvalue(ImageDimension - 2) );
  }
  
  /** The weights used to scale derivatives during processing */
  TRealType m_DerivativeWeights[itk::GetImageDimension<TInputImage>::ImageDimension];

  /** These weights are used to scale
      vector component values when they are combined to produce  a scalar.  The
      square roon*/
  TRealType m_ComponentWeights[itk::GetVectorDimension<InputPixelType>::VectorDimension];
  TRealType m_SqrtComponentWeights[itk::GetVectorDimension<InputPixelType>::VectorDimension];

private:
  bool m_UseImageSpacing;
  bool m_UsePrincipleComponents;
  int m_RequestedNumberOfThreads;


  typename ImageBaseType::ConstPointer m_RealValuedInputImage;
  
  VectorGradientMagnitudeImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  RadiusType    m_NeighborhoodRadius;  
};
  
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVectorGradientMagnitudeImageFilter.txx"
#endif

#endif