File: itkVectorGradientMagnitudeImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (379 lines) | stat: -rw-r--r-- 12,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkVectorGradientMagnitudeImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2006-03-19 04:36:58 $
  Version:   $Revision: 1.12 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkVectorGradientMagnitudeImageFilter_txx
#define _itkVectorGradientMagnitudeImageFilter_txx

#include "itkVectorGradientMagnitudeImageFilter.h"

#include "itkNeighborhoodAlgorithm.h"
#include "itkImageRegionIterator.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkProgressReporter.h"
#include "itkVectorCastImageFilter.h"

#include "vnl/vnl_math.h"

namespace itk
{

template <typename TInputImage, typename TRealType, typename TOutputImage>
void
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  unsigned i;
  Superclass::PrintSelf(os,indent);
  os << indent << "m_UseImageSpacing = "          << m_UseImageSpacing
     << std::endl;
  os << indent << "m_UsePrincipleComponents = "   << m_UseImageSpacing
     << std::endl;
  os << indent << "m_RequestedNumberOfThreads = " << m_RequestedNumberOfThreads
     << std::endl;
  os << indent << "m_DerivativeWeights = ";
  for (i = 0; i < ImageDimension; i++)
    { os << m_DerivativeWeights[i] << " "; }
  os << std::endl;
  os << indent << "m_ComponentWeights = ";
  for (i = 0; i < VectorDimension; i++)
    { os << m_ComponentWeights[i] << " "; }
  os << std::endl;
  os << indent << "m_NeighborhoodRadius = "          << m_NeighborhoodRadius
     << std::endl;
  os << indent << "m_RealValuedInputImage = "          << m_RealValuedInputImage.GetPointer()
     << std::endl;
}
  
template <typename TInputImage, typename TRealType, typename TOutputImage>
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::VectorGradientMagnitudeImageFilter()
{
  unsigned int i;
  m_UseImageSpacing = false;
  m_UsePrincipleComponents = true;
  m_RequestedNumberOfThreads = this->GetNumberOfThreads();
  for (i = 0; i < ImageDimension; i++)
    {
    m_NeighborhoodRadius[i] = 1; // radius of neighborhood we will use
    m_DerivativeWeights[i] = static_cast<TRealType>(1.0);
    }
  for (i = 0; i < VectorDimension; i++)
    {
    m_ComponentWeights[i] = static_cast<TRealType>(1.0);
    m_SqrtComponentWeights[i] = static_cast<TRealType>(1.0);
    }
}
template <typename TInputImage, typename TRealType, typename TOutputImage>
void
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::SetDerivativeWeights(TRealType data[])
{
  m_UseImageSpacing = false;

  for (unsigned i = 0; i < ImageDimension; ++i)
    {
    if (m_DerivativeWeights[i] != data[i])
      {
      this->Modified();
      m_DerivativeWeights[i] = data[i];
      }
    }
}

template <typename TInputImage, typename TRealType, typename TOutputImage>
void 
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::SetUseImageSpacing(bool f)
{
  if (m_UseImageSpacing == f) { return; }

  // Only reset the weights if they were previously set to the image spacing,
  // otherwise, the user may have provided their own weightings.
  if (f == false && m_UseImageSpacing == true)
    {
    for (unsigned i = 0; i < ImageDimension; ++i)
      {
      m_DerivativeWeights[i] = static_cast<TRealType>(1.0);
      }
    }

  m_UseImageSpacing = f;
}
  
template <typename TInputImage, typename TRealType, typename TOutputImage>
void 
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // get pointers to the input and output
  InputImagePointer  inputPtr = 
    const_cast< InputImageType * >( this->GetInput());
  OutputImagePointer outputPtr = this->GetOutput();
  
  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius( m_NeighborhoodRadius );

  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
    {
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.

    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    
    // build an exception
    InvalidRequestedRegionError e(__FILE__, __LINE__);
    e.SetLocation(ITK_LOCATION);
    e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
    e.SetDataObject(inputPtr);
    throw e;
    }
}

template< typename TInputImage, typename TRealType, typename TOutputImage >
void
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::BeforeThreadedGenerateData()
{
  Superclass::BeforeThreadedGenerateData();

  // Calculate the square-roots of the component weights.
  for (unsigned i = 0; i < VectorDimension; ++i)
    {
    if (m_ComponentWeights[i] < 0 )
      {
      itkExceptionMacro( << "Component weights must be positive numbers" );
      }
    m_SqrtComponentWeights[i] = ::sqrt(m_ComponentWeights[i]);
    }

  
  // Set the weights on the derivatives.
  // Are we using image spacing in the calculations?  If so we must update now
  // in case our input image has changed.
  if (m_UseImageSpacing == true)
    {

    for (unsigned i = 0; i < ImageDimension; i++)
      {
      if (static_cast<TRealType>(this->GetInput()->GetSpacing()[i]) == 0.0)
        {
        itkExceptionMacro(<< "Image spacing in dimension " << i << " is zero.");
        }
      m_DerivativeWeights[i]
        = static_cast<TRealType>( 1.0 /
                                  static_cast<TRealType>(this->GetInput()->GetSpacing()[i]) );
      }
    }

  // If using the principle components method, then force this filter to use a
  // single thread because vnl eigensystem objects are not thread-safe.  3D
  // data is ok because we have a special solver.
  if (m_UsePrincipleComponents == true && ImageDimension != 3)
    {
    m_RequestedNumberOfThreads = this->GetNumberOfThreads();
    this->SetNumberOfThreads(1);
    }
  else
    {
    this->SetNumberOfThreads(m_RequestedNumberOfThreads);
    }

  /** If the input needs casting to a real-valued vector type, create the
      appropriate image and set the m_RealValuedInputImage pointer to this
      image.  Otherwise just point to the input image. */
  if ( typeid( typename InputImageType::PixelType ) != typeid( RealVectorType ) )
    {
    typename VectorCastImageFilter<TInputImage, RealVectorImageType>::Pointer
      caster = VectorCastImageFilter<TInputImage, RealVectorImageType>::New();
    caster->SetInput(this->GetInput());
    caster->Update();
    m_RealValuedInputImage = caster->GetOutput();
    }
  else
    {
    m_RealValuedInputImage
      = dynamic_cast<const ImageBase<ImageDimension> *>(this->GetInput());
    }
  
}

template< typename TInputImage, typename TRealType, typename TOutputImage >
void
VectorGradientMagnitudeImageFilter< TInputImage, TRealType, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
                       int threadId)
{

  ZeroFluxNeumannBoundaryCondition<RealVectorImageType> nbc;
  ConstNeighborhoodIteratorType bit;
  ImageRegionIterator<TOutputImage> it;
  
  // Find the data-set boundary "faces"
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<RealVectorImageType>::
    FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<RealVectorImageType> bC;
  faceList = bC(dynamic_cast<const RealVectorImageType *>(m_RealValuedInputImage.GetPointer()),
                outputRegionForThread, m_NeighborhoodRadius);

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<RealVectorImageType>::
    FaceListType::iterator fit;
  fit = faceList.begin();

  // Support progress methods/callbacks
  ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());

  // Process each of the data set faces.  The iterator is reinitialized on each
  // face so that it can determine whether or not to check for boundary
  // conditions.
  for (fit=faceList.begin(); fit != faceList.end(); ++fit)
    { 
    bit = ConstNeighborhoodIteratorType(m_NeighborhoodRadius,
                                        dynamic_cast<const RealVectorImageType *>(m_RealValuedInputImage.GetPointer()),
                                        *fit);
    it = ImageRegionIterator<TOutputImage>(this->GetOutput(), *fit);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    if (m_UsePrincipleComponents == true)
      {
      if (ImageDimension == 3)
        { // Use the specialized eigensolve which can be threaded
        while ( ! bit.IsAtEnd() )
          {
          it.Set( this->EvaluateAtNeighborhood3D(bit) );
          ++bit;
          ++it;
          progress.CompletedPixel();
          }
        }
      else
        {
        while ( ! bit.IsAtEnd() )
          {
          it.Set( this->EvaluateAtNeighborhood(bit) );
          ++bit;
          ++it;
          progress.CompletedPixel();
          }
        }
      }
    else
      {
      while ( ! bit.IsAtEnd() )
        {
        it.Set( this->NonPCEvaluateAtNeighborhood(bit) );
        ++bit;
        ++it;
        progress.CompletedPixel();
        }
      }
    }
}

template <typename TInputImage, typename TRealType, typename TOutputImage>
int
VectorGradientMagnitudeImageFilter<TInputImage, TRealType, TOutputImage>
::CubicSolver(double *c, double *s)
{
  // IMPORTANT
  // This code is specialized for particular case of positive symmetric
  // matrix.   It also assumes that x^3 coefficient is 1. c contains the
  // coefficients of the polynomial: x^3 + c[2]x^2 + c[1]x^1 + c[0].  The roots
  // s are not necessarily sorted, and int is the number of distinct roots
  // found in s.
  int     num;
  const double dpi = 3.14159265358979323846;
  const double epsilon = 1.0e-11;

  // Substitution of  x = y - c[2]/3 eliminate the quadric term  x^3 +px + q = 0
  double sq_c2 = c[2] * c[2];
  double p = 1.0/3 * (- 1.0/3.0 * sq_c2 + c[1]);
  double q = 1.0/2 * (2.0/27.0 * c[2] * sq_c2 - 1.0/3.0 * c[2] * c[1] + c[0]);
  
  // Cardano's formula
  double cb_p = p * p * p;
  double D = q * q + cb_p;
  
  if (D < -epsilon) // D < 0, three real solutions, by far the common case.
    {
    double phi = 1.0/3.0 * vcl_acos(-q / vcl_sqrt(-cb_p));
    double t = 2.0 * vcl_sqrt(-p);
      
    s[0] =   t * vcl_cos(phi);
    s[1] = - t * vcl_cos(phi + dpi / 3);
    s[2] = - t * vcl_cos(phi - dpi / 3);
    num = 3;
    }

  else if (D < epsilon) // D == 0
    {
    if (q > -epsilon && q < epsilon)
      {
      s[0] = 0.0;
      num = 1;
      }
    else
      {
      double u = vnl_math_cuberoot(-q);
      s[0] = 2 * u;
      s[1] = - u;
      num = 2;
      }
    }
  else // Only one real solution. This case misses a double root on rare
       // occasions with very large char eqn coefficients.
    {
    double sqrt_D = vcl_sqrt(D);
    double u = vnl_math_cuberoot(sqrt_D - q);
    double v = - vnl_math_cuberoot(sqrt_D + q);
      
    s[0] = u + v;
    num = 1;
    }
  
  // Resubstitute
  double sub = 1.0/3.0 * c[2];
  
  for (int i = 0; i < num; ++i)
    {      s[i] -= sub;    }
  
  return num;
}


} // end namespace itk

#endif