1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVectorGradientNDAnisotropicDiffusionFunction.txx,v $
Language: C++
Date: $Date: 2003-09-10 14:28:59 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorGradientNDAnisotropicDiffusionFunction_txx_
#define __itkVectorGradientNDAnisotropicDiffusionFunction_txx_
namespace itk {
template<class TImage>
double VectorGradientNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
template<class TImage>
VectorGradientNDAnisotropicDiffusionFunction<TImage>
::VectorGradientNDAnisotropicDiffusionFunction()
{
unsigned int i, j;
RadiusType r;
for (i = 0; i < ImageDimension; ++i)
{
r[i] = 1;
}
this->SetRadius(r);
// Dummy neighborhood used to set up the slices.
Neighborhood<PixelType, ImageDimension> it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for (i = 0; i< ImageDimension; ++i)
{ m_Stride[i] = it.GetStride(i); }
for (i = 0; i< ImageDimension; ++i)
{ x_slice[i] = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]); }
for (i = 0; i< ImageDimension; ++i)
{
for (j = 0; j < ImageDimension; ++j)
{
// For taking derivatives in the i direction that are offset one
// pixel in the j direction.
xa_slice[i][j]
= std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
xd_slice[i][j]
= std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
}
}
// Allocate the derivative operator.
dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
// fashion
dx_op.SetOrder(1);
dx_op.CreateDirectional();
}
template<class TImage>
typename VectorGradientNDAnisotropicDiffusionFunction<TImage>::PixelType
VectorGradientNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *,
const FloatOffsetType&)
{
unsigned int i, j, k;
PixelType delta;
double GradMag;
double GradMag_d;
double Cx[ImageDimension];
double Cxd[ImageDimension];
// Remember: PixelType is a Vector of length VectorDimension.
PixelType dx_forward[ImageDimension];
PixelType dx_backward[ImageDimension];
PixelType dx[ImageDimension];
PixelType dx_aug;
PixelType dx_dim;
// Calculate the directional and centralized derivatives.
for (i = 0; i < ImageDimension; i++)
{
dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
- it.GetPixel(m_Center);
dx_backward[i]= it.GetPixel(m_Center)
- it.GetPixel(m_Center - m_Stride[i]);
dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
}
// Calculate the conductance term for each dimension.
for (i = 0; i < ImageDimension; i++)
{
// Calculate gradient magnitude approximation in this
// dimension linked (summed) across the vector components.
GradMag = 0.0;
GradMag_d = 0.0;
for (k =0; k < VectorDimension; k++)
{
GradMag += vnl_math_sqr( dx_forward[i][k] );
GradMag_d += vnl_math_sqr( dx_backward[i][k] );
for (j = 0; j < ImageDimension; j++)
{
if ( j != i)
{
dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
GradMag += 0.25f * vnl_math_sqr( dx[j][k]+dx_aug[k] );
GradMag_d += 0.25f * vnl_math_sqr( dx[j][k]+dx_dim[k] );
}
}
}
if (m_K == 0.0)
{
Cx[i] = 0.0;
Cxd[i] = 0.0;
}
else
{
Cx[i] = ::exp( GradMag / m_K );
Cxd[i] = ::exp( GradMag_d / m_K );
}
}
// Compute update value
for (k = 0; k < VectorDimension; k++)
{
delta[k] = NumericTraits<ScalarValueType>::Zero;
for (i = 0; i < ImageDimension; ++i)
{
dx_forward[i][k] *= Cx[i];
dx_backward[i][k] *= Cxd[i];
delta[k] += dx_forward[i][k] - dx_backward[i][k];
}
}
return delta;
}
} // end namespace itk
#endif
|