File: itkVectorGradientNDAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (157 lines) | stat: -rw-r--r-- 4,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkVectorGradientNDAnisotropicDiffusionFunction.txx,v $
  Language:  C++
  Date:      $Date: 2003-09-10 14:28:59 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVectorGradientNDAnisotropicDiffusionFunction_txx_
#define __itkVectorGradientNDAnisotropicDiffusionFunction_txx_

namespace itk {

template<class TImage>
double VectorGradientNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
  
template<class TImage>
VectorGradientNDAnisotropicDiffusionFunction<TImage>
::VectorGradientNDAnisotropicDiffusionFunction()
{
  unsigned int i, j;
  RadiusType r;

  for (i = 0; i < ImageDimension; ++i)
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood<PixelType, ImageDimension> it;
  it.SetRadius(r);
  
  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for (i = 0; i< ImageDimension; ++i)
    { m_Stride[i] = it.GetStride(i); }

  for (i = 0; i< ImageDimension; ++i)
    { x_slice[i]  = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]); }
  
  for (i = 0; i< ImageDimension; ++i)
    {
    for (j = 0; j < ImageDimension; ++j)
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j]
        = std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]); 
      xd_slice[i][j]
        = std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
      }
    }
  
  // Allocate the derivative operator.
  dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
                         // fashion 
  dx_op.SetOrder(1);
  dx_op.CreateDirectional();
}

template<class TImage>
typename VectorGradientNDAnisotropicDiffusionFunction<TImage>::PixelType
VectorGradientNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *,
                const FloatOffsetType&)
{
  unsigned int i, j, k;
  PixelType delta;

  double GradMag;
  double GradMag_d;
  double Cx[ImageDimension];
  double Cxd[ImageDimension];

  // Remember: PixelType is a Vector of length VectorDimension.
  PixelType dx_forward[ImageDimension];
  PixelType dx_backward[ImageDimension];
  PixelType dx[ImageDimension];
  PixelType dx_aug;
  PixelType dx_dim;

  // Calculate the directional and centralized derivatives.
  for (i = 0; i < ImageDimension; i++)
    {
    dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
      - it.GetPixel(m_Center);
    dx_backward[i]=  it.GetPixel(m_Center)
      - it.GetPixel(m_Center - m_Stride[i]);
    dx[i]      = m_InnerProduct(x_slice[i], it, dx_op);
    }

  // Calculate the conductance term for each dimension.
  for (i = 0; i < ImageDimension; i++)
    {
    // Calculate gradient magnitude approximation in this
    // dimension linked (summed) across the vector components.
    GradMag   = 0.0;
    GradMag_d = 0.0;
    for (k =0; k < VectorDimension; k++)
      {
      GradMag   +=  vnl_math_sqr( dx_forward[i][k] );
      GradMag_d +=  vnl_math_sqr( dx_backward[i][k] );

      for (j = 0; j < ImageDimension; j++)
        {
        if ( j != i)
          {
          dx_aug  = m_InnerProduct(xa_slice[j][i], it, dx_op);
          dx_dim  = m_InnerProduct(xd_slice[j][i], it, dx_op);
          GradMag   += 0.25f * vnl_math_sqr( dx[j][k]+dx_aug[k] );
          GradMag_d += 0.25f * vnl_math_sqr( dx[j][k]+dx_dim[k] );
          }
        }
      }
      
    if (m_K == 0.0)
      {       
      Cx[i] = 0.0;
      Cxd[i] = 0.0;
      }
    else
      {
      Cx[i]  = ::exp( GradMag   / m_K );
      Cxd[i] = ::exp( GradMag_d / m_K ); 
      }
    }

  // Compute update value  
  for (k = 0; k < VectorDimension; k++)
    {
    delta[k] = NumericTraits<ScalarValueType>::Zero;
      
    for (i = 0; i < ImageDimension; ++i)
      {
      dx_forward[i][k]  *= Cx[i];
      dx_backward[i][k] *= Cxd[i];
      delta[k] += dx_forward[i][k] - dx_backward[i][k];
      }
    }
      
  return delta;
}

} // end namespace itk

#endif