1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkZeroCrossingBasedEdgeDetectionImageFilter.txx,v $
Language: C++
Date: $Date: 2006-01-11 19:43:32 $
Version: $Revision: 1.15 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkZeroCrossingBasedEdgeDetectionImageFilter_txx
#define _itkZeroCrossingBasedEdgeDetectionImageFilter_txx
#include "itkZeroCrossingBasedEdgeDetectionImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkLaplacianImageFilter.h"
#include "itkZeroCrossingImageFilter.h"
#include "itkProgressAccumulator.h"
namespace itk
{
/*
template <class TInputImage, class TOutputImage>
void
ZeroCrossingBasedEdgeDetectionImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
InputImagePointer inputPtr = this->GetInput();
OutputImagePointer outputPtr = this->GetOutput();
if ( !inputPtr || !outputPtr )
{
return;
}
// Build an operator so that we can determine the kernel size
unsigned long radius = 1;
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( radius );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
{
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion( inputRequestedRegion );
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
*/
template< class TInputImage, class TOutputImage >
void
ZeroCrossingBasedEdgeDetectionImageFilter< TInputImage, TOutputImage >
::GenerateData( )
{
typename InputImageType::ConstPointer input = this->GetInput();
// Create the filters that are needed
typename DiscreteGaussianImageFilter<TInputImage, TOutputImage>::Pointer
gaussianFilter
= DiscreteGaussianImageFilter<TInputImage, TOutputImage>::New();
typename LaplacianImageFilter<TInputImage, TOutputImage>::Pointer laplacianFilter
= LaplacianImageFilter<TInputImage, TOutputImage>::New();
typename ZeroCrossingImageFilter<TInputImage, TOutputImage>:: Pointer
zerocrossingFilter =
ZeroCrossingImageFilter<TInputImage,TOutputImage>::New();
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
//Construct the mini-pipeline
// Apply the Gaussian filter
gaussianFilter->SetVariance(m_Variance);
gaussianFilter->SetMaximumError(m_MaximumError);
gaussianFilter->SetInput(input);
progress->RegisterInternalFilter(gaussianFilter, 1.0f/3.0f);
// Calculate the laplacian of the smoothed image
laplacianFilter->SetInput(gaussianFilter->GetOutput());
progress->RegisterInternalFilter(laplacianFilter, 1.0f/3.0f);
// Find the zero-crossings of the laplacian
zerocrossingFilter->SetInput(laplacianFilter->GetOutput());
zerocrossingFilter->SetBackgroundValue( m_BackgroundValue );
zerocrossingFilter->SetForegroundValue( m_ForegroundValue );
zerocrossingFilter->GraftOutput( this->GetOutput() );
progress->RegisterInternalFilter(zerocrossingFilter, 1.0f/3.0f);
zerocrossingFilter->Update();
// Graft the output of the mini-pipeline back onto the filter's output.
// This action copies back the region ivars and meta-data
this->GraftOutput(zerocrossingFilter->GetOutput());
}
template< class TInputImage, class TOutputImage >
void
ZeroCrossingBasedEdgeDetectionImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Variance: " << m_Variance << std::endl;
os << indent << "MaximumError: " << m_MaximumError << std::endl;
os << indent << "ForegroundValue: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ForegroundValue)
<< std::endl;
os << indent << "BackgroundValue: "
<< static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue)
<< std::endl;
}
}//end of itk namespace
#endif
|