1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBloxCoreAtomImage.txx,v $
Language: C++
Date: $Date: 2006-03-19 16:30:14 $
Version: $Revision: 1.41 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkBloxCoreAtomImage_txx
#define __itkBloxCoreAtomImage_txx
#include "itkBloxCoreAtomImage.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkConicShellInteriorExteriorSpatialFunction.h"
#include "itkEllipsoidInteriorExteriorSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
#include "vnl/vnl_matrix.h"
namespace itk
{
template <unsigned int NDimension>
BloxCoreAtomImage<NDimension>
::BloxCoreAtomImage()
{
m_MedialNodeCount = 0;
m_NodePointerList = new std::vector<BloxCoreAtomPixel<NDimension>*>();
}
template <unsigned int NDimension>
BloxCoreAtomImage<NDimension>
::~BloxCoreAtomImage()
{
delete m_NodePointerList;
}
template <unsigned int NDimension>
void
BloxCoreAtomImage<NDimension>
::DoEigenanalysis()
{
itk::ImageRegionIterator<Self> bloxIt =
itk::ImageRegionIterator<Self>(this, this->GetLargestPossibleRegion() );
for(bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
( &bloxIt.Value() )->DoCoreAtomEigenanalysis();
}
}
template <unsigned int NDimension>
void
BloxCoreAtomImage<NDimension>
::DoCoreAtomVoting()
{
//cerr << "BloxCoreAtomImage::DoCoreAtomVoting()" << endl;
// Iterator to access all pixels in the image
ImageRegionIterator<Self> bloxIt =
ImageRegionIterator<Self>(this, this->GetLargestPossibleRegion() );
// Pointer for accessing pixels
BloxCoreAtomPixel<NDimension>* pPixel = 0;
// Results of eigenanalysis from each pixel
typename BloxCoreAtomPixel<NDimension>::EigenvalueType eigenvalues;
typename BloxCoreAtomPixel<NDimension>::EigenvectorType eigenvectors;
// Results of eigenanalysis from each pixel
typename BloxCoreAtomPixel<NDimension>::EigenvalueType sf_eigenvalues;
typename BloxCoreAtomPixel<NDimension>::EigenvectorType sf_eigenvectors;
unsigned int voterCount = 0;
for(bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
// Get a pointer to the pixel
pPixel = &bloxIt.Value();
// If there are no core atoms in this pixel, it doesn't get to vote
if( pPixel->empty() )
{
continue;
}
//populate the NodePointerList
m_NodePointerList->push_back(pPixel);
voterCount++;
// Get eigenanalysis results
eigenvalues = pPixel->GetEigenvalues();
eigenvectors = pPixel->GetEigenvectors();
// Ellipsoid axis length array
Point<double, NDimension> axisLengthArray;
// Compute first length
axisLengthArray[0] = 0.5 * pPixel->GetMeanCoreAtomDiameter();
// Precompute alphaOne
double alphaOne = 1 - eigenvalues[0];
// Watch out for /0 problems
if(alphaOne==0)
{
alphaOne = 0.001;
}
// Now compute the rest of the lengths
for(unsigned int i = 1; i < NDimension; i++)
{
axisLengthArray[i] = ( (1 - eigenvalues[i]) / alphaOne)
* axisLengthArray[0];
}
// Build the ellipsoid voting region
typedef EllipsoidInteriorExteriorSpatialFunction<NDimension, PositionType>
VoteFunctionType;
typename VoteFunctionType::Pointer ellipsoid = VoteFunctionType::New();
// Create an iterator to traverse the ellipsoid region
typedef FloodFilledSpatialFunctionConditionalIterator
<Self, VoteFunctionType> ItType;
// The seed position for the ellipsoid is the current pixel's index
// in data space since this is always at the center of the voting ellipsoid
typename Self::IndexType seedPos = bloxIt.GetIndex();
// Figure out the center of the ellipsoid, which is the center
// of the voting pixel
typename VoteFunctionType::InputType centerPosition;
ContinuousIndex<double, NDimension> contIndex;
for(unsigned int i = 0; i < NDimension; i ++ )
{
contIndex[i] = (double)seedPos[i] + 0.5;
}
// Get the physical location of this center index
this->TransformContinuousIndexToPhysicalPoint(contIndex, centerPosition);
ellipsoid->SetCenter(centerPosition);
ellipsoid->SetOrientations(eigenvectors);
ellipsoid->SetAxes(axisLengthArray);
// Instantiate the iterator
ItType sfi = ItType(this, ellipsoid, seedPos);
// Get the position of the voting blox
typedef Point<double, NDimension> TPosition;
TPosition voterPosition;
typename Self::IndexType voterIndex = bloxIt.GetIndex();
this->TransformIndexToPhysicalPoint(voterIndex, voterPosition);
int voteeCount = 0;
sfi.SetCenterInclusionStrategy();
// Iterate through the ellipsoid and cast votes
for( sfi.GoToBegin(); !( sfi.IsAtEnd() ); ++sfi)
{
TPosition voteePosition;
typename Self::IndexType voteeIndex = sfi.GetIndex();
//std::cerr << "voteeIndex "<< voteeIndex << std::endl ;
this->TransformIndexToPhysicalPoint(voteeIndex, voteePosition);
// vector from voting blox to current votee
typename TPosition::VectorType dbar = voterPosition - voteePosition;
voteeCount ++;
// The voting process and variables are explained in
// IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999
// page 1029
// The votee does not get voted for if it's empty
if( sfi.Get().GetSize() == 0 )
{
continue;
}
// form the ellipsoidal distance de
double de = 0;
double sf_de_sqr = 0;
for (unsigned int i = 0; i < NDimension; i++)
{
de += vcl_pow((dot_product(eigenvectors.get_column(i),
dbar.GetVnlVector() ) / axisLengthArray[i] ), 2);
}
de = vcl_sqrt(de);
//printf("De = %f\n", de);
double weight_factor = vcl_exp(-1.0*de*de);
// vote strength
double voteStrength = pPixel->size()*weight_factor;
//printf("Vote strength = %f\n", voteStrength);
//printf("weight_factor = %f\n", weight_factor);
// Get eigenanalysis results
sf_eigenvalues = sfi.Get().GetEigenvalues();
sf_eigenvectors = sfi.Get().GetEigenvectors();
for (unsigned int i = 0; i < NDimension; i++)
{
sf_de_sqr += vcl_pow((dot_product(sf_eigenvectors.get_column(i),
dbar.GetVnlVector() ) / axisLengthArray[i] ), 2);
}
//printf("sf_de = %f\n", vcl_sqrt(sf_de_sqr));
//CALCULATE WEIGHT FACTOR FOR INDEX OF SPATIAL FUNCTION ITERATION
double sf_weight_factor = vcl_exp(-1.0*sf_de_sqr);
//HERE WE CALL CalcWeightedCoreAtomLocation using de to keep track
//of the weighted location of each voted medial node based on
// constituent core atom locations/
// Reminder: sfi.Get() is the pixel being voted for
// and pPixel is doing the voting
sfi.Get().CalcWeightedCoreAtomLocation(sf_weight_factor, pPixel);
// cast the vote
sfi.Get().CollectVote(pPixel->GetRawCMatrixPointer(),
voteStrength, pPixel->size() );
} // end cast votes from this pixel
//printf("Blox voted for %i other pixels\n", voteeCount);
} // end cast votes from all pixels
// The final task is to normalize all of the voted blox
// and recompute the eigenanalysis on the new matrix
for(bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
(&bloxIt.Value())->NormalizeVotedCMatrix();
(&bloxIt.Value())->DoVotedEigenanalysis();
}
m_MedialNodeCount = voterCount;
//cerr << "MedialNodeCount = " << m_MedialNodeCount << endl;
}
template <unsigned int NDimension>
void
BloxCoreAtomImage<NDimension>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
// Iterator to access all pixels in the image
ImageRegionConstIterator<Self> bloxIt =
ImageRegionConstIterator<Self>(this, this->GetLargestPossibleRegion() );
// Pointer for accessing pixels
BloxCoreAtomPixel<NDimension> pPixel;
// Results of eigenanalysis from each pixel
typename BloxCoreAtomPixel<NDimension>::EigenvalueType eigenvalues;
typename BloxCoreAtomPixel<NDimension>::EigenvalueType veigenvalues;
os << indent << "Index\t# Core Atoms\tEigen Values\t\t\tMean CA Length\t\
Voted Eigen Values\n"
<< "-----\t------------\t------------\t\t\t--------------\t----\
--------------\n" << std::endl;
int counter = 0;
for(bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
// Get a pointer to the pixel
pPixel = bloxIt.Value();
eigenvalues = pPixel.GetEigenvalues();
veigenvalues = pPixel.GetVotedEigenvalues();
if(!pPixel.empty())
{
os << indent << bloxIt.GetIndex() << "\t";
os << indent << pPixel.GetSize() << "\t";
os << indent << eigenvalues[0] << " " << eigenvalues[1] << " "
<< eigenvalues[2] << "\t";
os << indent << pPixel.GetMeanCoreAtomDiameter() << "\t\t";
os << indent << veigenvalues[0] << " " << veigenvalues[1] << " "
<< veigenvalues[2] << "\t" << std::endl;
os << std::endl << indent << "Node Pointer List: "
<< (*m_NodePointerList)[counter]->GetVotedLocation() << std::endl;
counter++;
}
}
os << "Number of Medial Nodes: " << m_MedialNodeCount << std::endl;
}
} // end namespace itk
#endif
|