1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkConicShellInteriorExteriorSpatialFunction.txx,v $
Language: C++
Date: $Date: 2006-03-19 23:22:57 $
Version: $Revision: 1.17 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkConicShellInteriorExteriorSpatialFunction_txx
#define __itkConicShellInteriorExteriorSpatialFunction_txx
#include "itkConicShellInteriorExteriorSpatialFunction.h"
namespace itk
{
template <unsigned int VDimension, typename TInput>
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::ConicShellInteriorExteriorSpatialFunction()
{
m_Origin.Fill(0.0);
m_OriginGradient.Fill(0.0);
m_DistanceMin = 0;
m_DistanceMax = 0;
m_Polarity = 0;
m_Epsilon = 0;
}
template <unsigned int VDimension, typename TInput>
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::~ConicShellInteriorExteriorSpatialFunction()
{
}
template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::SetOriginGradient(GradientType grad)
{
m_OriginGradient = grad;
// Normalize the origin gradient
m_OriginGradient.GetVnlVector().normalize();
}
template <unsigned int VDimension, typename TInput>
typename ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::OutputType
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::Evaluate(const InputType& position) const
{
// As from the header...
/**
* We are creating search areas from BoundaryPoint1 in which to look for
* candidate BoundaryPoint2's with which to form core atoms. Assume the
* "worst case" that BoundaryPoint2 is somewhere in that search area pointing
* directly at BoundaryPoint1.
*
* The search area (ConicShell?) from each BoundaryPoint1 has the following
* parameters:
*
* DistanceMax and DistanceMin from the location of the BoundaryPoint
*
* AngleMax from the line along the gradient at the boundary point.
* This is determined in n dimensions by taking the dot product of
* two vectors,
* (1) the normalized gradient at BoundaryPoint1 and
* (2) the normalized vector from BoundaryPoint1 to BoundaryPoint2.
*
* If the absolute value of that dot product is greater than (1 - epsilon)
* then you are in the ConicShell. This epsilon is the same one determining
* face-to-faceness in the IEEE TMI paper.
*/
// Set the direction of the gradient
// O means the direction that the gradient is pointing,
// 1 means the opposite direction
typedef Vector<double, VDimension> VectorType;
// Compute the vector from the origin to the point we're testing
VectorType vecOriginToTest = position - m_Origin;
// Compute the length of this vector
// double vecDistance = vecOriginToTest.GetVnlVector().magnitude();
double vecDistance = vecOriginToTest.GetNorm();
// Check to see if this an allowed distance
if( !( (vecDistance > m_DistanceMin)&&(vecDistance < m_DistanceMax) ) )
return 0; // not inside the conic shell
// Normalize it
// vecOriginToTest.GetVnlVector().normalize();
vecOriginToTest.Normalize();
// Create a temp vector to get around const problems
GradientType originGradient = m_OriginGradient;
// Now compute the dot product
double dotprod = originGradient * vecOriginToTest;
if(m_Polarity==1)
{
dotprod = dotprod * -1;
}
// Check to see if it meet's the angle criterior
OutputType result;
if( dotprod > (1 - m_Epsilon) )
{
result = 1; // it's inside the shell
}
else
{
result = 0; // it's not inside the shell
}
return result;
}
template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
unsigned int i;
os << indent << "Origin: [";
for (i=0; i < VDimension - 1; i++)
{
os << m_Origin[i] << ", ";
}
os << "]" << std::endl;
os << indent << "Gradient at origin: [";
for (i=0; i < VDimension - 1; i++)
{
os << m_OriginGradient[i] << ", ";
}
os << "]" << std::endl;
os << indent << "DistanceMin: " << m_DistanceMin << std::endl;
os << indent << "DistanceMax: " << m_DistanceMax << std::endl;
os << indent << "Epsilon: " << m_Epsilon << std::endl;
os << indent << "Polarity: " << m_Polarity << std::endl;
}
} // end namespace itk
#endif
|