File: itkConicShellInteriorExteriorSpatialFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (162 lines) | stat: -rw-r--r-- 4,920 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkConicShellInteriorExteriorSpatialFunction.txx,v $
  Language:  C++
  Date:      $Date: 2006-03-19 23:22:57 $
  Version:   $Revision: 1.17 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkConicShellInteriorExteriorSpatialFunction_txx
#define __itkConicShellInteriorExteriorSpatialFunction_txx

#include "itkConicShellInteriorExteriorSpatialFunction.h"

namespace itk
{

template <unsigned int VDimension, typename TInput>
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::ConicShellInteriorExteriorSpatialFunction()
{
  m_Origin.Fill(0.0);
  m_OriginGradient.Fill(0.0);

  m_DistanceMin = 0;
  m_DistanceMax = 0;
  m_Polarity = 0;
  m_Epsilon = 0;
}

template <unsigned int VDimension, typename TInput>
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::~ConicShellInteriorExteriorSpatialFunction()
{

}

template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::SetOriginGradient(GradientType grad)
{
  m_OriginGradient = grad;

  // Normalize the origin gradient
  m_OriginGradient.GetVnlVector().normalize();
}

template <unsigned int VDimension, typename TInput>
typename ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::OutputType
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::Evaluate(const InputType& position) const
{
  // As from the header...
  /**
   * We are creating search areas from BoundaryPoint1 in which to look for 
   * candidate BoundaryPoint2's with which to form core atoms.  Assume the 
   * "worst case" that BoundaryPoint2 is somewhere in that search area pointing
   * directly at BoundaryPoint1. 
   *
   * The search area (ConicShell?) from each BoundaryPoint1 has the following 
   * parameters: 
   *
   * DistanceMax and DistanceMin from the location of the BoundaryPoint 
   *
   * AngleMax from the line along the gradient at the boundary point.
   * This is determined in n dimensions by taking the dot product of 
   * two vectors,
   * (1) the normalized gradient at BoundaryPoint1 and
   * (2) the normalized vector from BoundaryPoint1 to BoundaryPoint2.
   *
   * If the absolute value of that dot product is greater than (1 - epsilon)
   * then you are in the ConicShell.  This epsilon is the same one determining
   * face-to-faceness in the IEEE TMI paper.
   */

  // Set the direction of the gradient
  // O means the direction that the gradient is pointing,
  // 1 means the opposite direction

  typedef Vector<double, VDimension> VectorType;

  // Compute the vector from the origin to the point we're testing
  VectorType vecOriginToTest = position - m_Origin;

  // Compute the length of this vector
  // double vecDistance = vecOriginToTest.GetVnlVector().magnitude();
  double vecDistance = vecOriginToTest.GetNorm();

  // Check to see if this an allowed distance
  if( !( (vecDistance > m_DistanceMin)&&(vecDistance < m_DistanceMax) ) )
    return 0; // not inside the conic shell

  // Normalize it
  // vecOriginToTest.GetVnlVector().normalize();
  vecOriginToTest.Normalize();

  // Create a temp vector to get around const problems
  GradientType originGradient = m_OriginGradient;

  // Now compute the dot product
  double dotprod = originGradient * vecOriginToTest;

  if(m_Polarity==1)
    {
    dotprod = dotprod * -1;
    }

  // Check to see if it meet's the angle criterior
  OutputType result;
  if( dotprod > (1 - m_Epsilon) )
    {
    result = 1; // it's inside the shell
    }
  else 
    {
    result = 0; // it's not inside the shell
    }

  return result;

}

template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  unsigned int i;
  os << indent << "Origin: [";
  for (i=0; i < VDimension - 1; i++)
    {
    os << m_Origin[i] << ", ";
    }
  os << "]" << std::endl;

  os << indent << "Gradient at origin: [";
  for (i=0; i < VDimension - 1; i++)
    {
    os << m_OriginGradient[i] << ", ";
    }
  os << "]" << std::endl;

  os << indent << "DistanceMin: " << m_DistanceMin << std::endl;
  os << indent << "DistanceMax: " << m_DistanceMax << std::endl;
  os << indent << "Epsilon: " << m_Epsilon << std::endl;
  os << indent << "Polarity: " << m_Polarity << std::endl;
}

} // end namespace itk

#endif