1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkFiniteDifferenceSparseImageFilter.txx,v $
Language: C++
Date: $Date: 2008-01-07 13:33:59 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkFiniteDifferenceSparseImageFilter_txx_
#define __itkFiniteDifferenceSparseImageFilter_txx_
#include "itkFiniteDifferenceSparseImageFilter.h"
namespace itk {
template <class TInputImageType, class TSparseOutputImageType>
FiniteDifferenceSparseImageFilter <TInputImageType, TSparseOutputImageType>
::FiniteDifferenceSparseImageFilter()
{
m_SparseFunction = 0;
m_PrecomputeFlag = false;
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter <TInputImageType, TSparseOutputImageType>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "PrecomputeFlag: " << m_PrecomputeFlag << std::endl;
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter <TInputImageType, TSparseOutputImageType>
::SetSparseFunction( SparseFunctionType *sf )
{
m_SparseFunction = sf;
Superclass::SetDifferenceFunction (sf);
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter <TInputImageType, TSparseOutputImageType>
::Initialize()
{
m_RegionList=(this->GetOutput()->GetNodeList())
->SplitRegions(this->GetNumberOfThreads());
// The active set of pixels in the sparse image is split into multi-threading
// regions once here for computationally efficiency.
// Later GetSplitRegions is used to access these partitions.
// This assumes that the active will not be changed until another
// call to Initialize(). Any reinitialization function also must call the
// SplitRegions function.
}
template <class TInputImageType, class TSparseOutputImageType>
int
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::GetSplitRegion( int i, int num, ThreadRegionType &splitRegion )
{
splitRegion.first = m_RegionList[i].first;
splitRegion.last = m_RegionList[i].last;
return num;
// check this last line with the ITKdevelopers. not sure what this is doing
// copied it from FiniteDifferenceImageFilter class
}
template<class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::ApplyUpdate( TimeStepType dt )
{
// Set up for multithreaded processing.
FDThreadStruct str;
str.Filter = this;
str.TimeStep = dt;
this->GetMultiThreader()->SetNumberOfThreads(this->GetNumberOfThreads());
this->GetMultiThreader()->SetSingleMethod(this->ApplyUpdateThreaderCallback,
&str);
// Multithread the execution
this->GetMultiThreader()->SingleMethodExecute();
}
template<class TInputImageType, class TSparseOutputImageType>
ITK_THREAD_RETURN_TYPE
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::ApplyUpdateThreaderCallback( void * arg )
{
FDThreadStruct * str;
int total, threadId, threadCount;
threadId = ((MultiThreader::ThreadInfoStruct *)(arg))->ThreadID;
threadCount = ((MultiThreader::ThreadInfoStruct *)(arg))->NumberOfThreads;
str = (FDThreadStruct *)
(((MultiThreader::ThreadInfoStruct *)(arg))->UserData);
// Execute the actual method with appropriate output region
// first find out how many pieces extent can be split into.
// Use GetSplitRegion to access partition previously computed by
// the SplitRegions function in the SparseFieldLayer class.
ThreadRegionType splitRegion;
total = str->Filter->GetSplitRegion(threadId, threadCount, splitRegion);
if (threadId < total)
{
str->Filter->ThreadedApplyUpdate(str->TimeStep, splitRegion, threadId);
}
return ITK_THREAD_RETURN_VALUE;
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::ThreadedApplyUpdate( TimeStepType dt, const ThreadRegionType ®ionToProcess,
int)
{
typename NodeListType::Iterator it;
for (it=regionToProcess.first; it != regionToProcess.last; ++it)
{
// all sparse image node types must have Data and Update members to be used
// with this filter
it->m_Data = this->DataConstraint (it->m_Data +
it->m_Update * dt);
}
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::PrecalculateChange()
{
// Set up for multithreaded processing.
FDThreadStruct str;
str.Filter = this;
this->GetMultiThreader()->SetNumberOfThreads(this->GetNumberOfThreads());
this->GetMultiThreader()->SetSingleMethod
(this->PrecalculateChangeThreaderCallback,&str);
// Multithread the execution
this->GetMultiThreader()->SingleMethodExecute();
}
template <class TInputImageType, class TSparseOutputImageType>
typename FiniteDifferenceSparseImageFilter <TInputImageType,
TSparseOutputImageType>::TimeStepType
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::CalculateChange()
{
if (m_PrecomputeFlag == true)
{
this->PrecalculateChange();
}
int threadCount;
TimeStepType dt;
// Set up for multithreaded processing.
FDThreadStruct str;
str.Filter = this;
str.TimeStep = NumericTraits<TimeStepType>::Zero;
// Not used during the calculate change step for normals.
this->GetMultiThreader()->SetNumberOfThreads(this->GetNumberOfThreads());
this->GetMultiThreader()->SetSingleMethod
(this->CalculateChangeThreaderCallback,&str);
// Initialize the list of time step values that will be generated by the
// various threads. There is one distinct slot for each possible thread,
// so this data structure is thread-safe. All of the time steps calculated
// in each thread will be combined in the ResolveTimeStepMethod.
threadCount = this->GetMultiThreader()->GetNumberOfThreads();
str.TimeStepList = new TimeStepType[threadCount];
str.ValidTimeStepList = new bool[threadCount];
for (int i =0; i < threadCount; ++i)
{
str.ValidTimeStepList[i] = false;
}
// Multithread the execution
this->GetMultiThreader()->SingleMethodExecute();
// Resolve the single value time step to return. The default implementation
// of ResolveTimeStep is to return the lowest value in the list that it is
// given.
dt = this->ResolveTimeStep(str.TimeStepList,
str.ValidTimeStepList, threadCount);
delete [] str.TimeStepList;
delete [] str.ValidTimeStepList;
return dt;
}
template <class TInputImageType, class TSparseOutputImageType>
ITK_THREAD_RETURN_TYPE
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::CalculateChangeThreaderCallback( void * arg )
{
FDThreadStruct * str;
int total, threadId, threadCount;
threadId = ((MultiThreader::ThreadInfoStruct *)(arg))->ThreadID;
threadCount = ((MultiThreader::ThreadInfoStruct *)(arg))->NumberOfThreads;
str = (FDThreadStruct *)
(((MultiThreader::ThreadInfoStruct *)(arg))->UserData);
// Execute the actual method with appropriate output region
// first find out how many pieces extent can be split into.
// Use GetSplitRegion to access partition previously computed by
// the Splitegions function in the SparseFieldLayer class.
ThreadRegionType splitRegion;
total = str->Filter->GetSplitRegion(threadId, threadCount, splitRegion);
if (threadId < total)
{
str->TimeStepList[threadId]
= str->Filter->ThreadedCalculateChange(splitRegion, threadId);
str->ValidTimeStepList[threadId] = true;
}
return ITK_THREAD_RETURN_VALUE;
}
template <class TInputImageType, class TSparseOutputImageType>
ITK_THREAD_RETURN_TYPE
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::PrecalculateChangeThreaderCallback( void * arg )
{
FDThreadStruct * str;
int total, threadId, threadCount;
threadId = ((MultiThreader::ThreadInfoStruct *)(arg))->ThreadID;
threadCount = ((MultiThreader::ThreadInfoStruct *)(arg))->NumberOfThreads;
str = (FDThreadStruct *)
(((MultiThreader::ThreadInfoStruct *)(arg))->UserData);
// Execute the actual method with appropriate output region
// first find out how many pieces extent can be split into.
// Use GetSplitRegion to access partition previously computed by
// the Splitegions function in the SparseFieldLayer class.
ThreadRegionType splitRegion;
total = str->Filter->GetSplitRegion(threadId, threadCount, splitRegion);
if (threadId < total)
{
str->Filter->ThreadedPrecalculateChange(splitRegion, threadId);
}
return ITK_THREAD_RETURN_VALUE;
}
template <class TInputImageType, class TSparseOutputImageType>
typename FiniteDifferenceSparseImageFilter<TInputImageType,
TSparseOutputImageType>::TimeStepType
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::ThreadedCalculateChange( const ThreadRegionType ®ionToProcess, int )
{
typedef typename FiniteDifferenceFunctionType::NeighborhoodType
NeighborhoodIteratorType;
typename SparseOutputImageType::Pointer output = this->GetOutput();
TimeStepType timeStep;
void *globalData;
const SizeType radius = m_SparseFunction->GetRadius();
// Ask the function object for a pointer to a data structure it will use to
// manage any global values it needs. We'll pass this back to the function
// object at each calculation so that the function object can use it to
// determine a time step for this iteration.
globalData = m_SparseFunction->GetGlobalDataPointer();
typename NodeListType::Iterator bandIt;
NeighborhoodIteratorType outputIt(radius, output,
output->GetRequestedRegion());
// compute the update variables
for (bandIt = regionToProcess.first; bandIt != regionToProcess.last; ++bandIt)
{
outputIt.SetLocation (bandIt->m_Index);
outputIt.GetCenterPixel()->m_Update =
m_SparseFunction->ComputeSparseUpdate(outputIt, globalData);
}
// Ask the finite difference function to compute the time step for
// this iteration. We give it the global data pointer to use, then
// ask it to free the global data memory.
timeStep = m_SparseFunction->ComputeGlobalTimeStep(globalData);
m_SparseFunction->ReleaseGlobalDataPointer(globalData);
return timeStep;
}
template <class TInputImageType, class TSparseOutputImageType>
void
FiniteDifferenceSparseImageFilter<TInputImageType, TSparseOutputImageType>
::ThreadedPrecalculateChange( const ThreadRegionType ®ionToProcess, int )
{
typedef typename FiniteDifferenceFunctionType::NeighborhoodType
NeighborhoodIteratorType;
typename SparseOutputImageType::Pointer output = this->GetOutput();
const SizeType radius = m_SparseFunction->GetRadius();
typename NodeListType::Iterator bandIt;
NeighborhoodIteratorType outputIt(radius, output,
output->GetRequestedRegion());
// the step for computing the flux variables
// these are used for computing the update in diffusion processes
// can disable these lines for non-diffusion processes
for (bandIt = regionToProcess.first; bandIt != regionToProcess.last; ++bandIt)
{
outputIt.SetLocation(bandIt->m_Index);
m_SparseFunction->PrecomputeSparseUpdate(outputIt);
}
}
} // end namespace itk
#endif
|