1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImage.h,v $
Language: C++
Date: $Date: 2008-02-04 12:34:11 $
Version: $Revision: 1.143 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkImage_h
#define __itkImage_h
#include "itkImageBase.h"
#include "itkImageRegion.h"
#include "itkImportImageContainer.h"
#include "itkDefaultPixelAccessor.h"
#include "itkDefaultPixelAccessorFunctor.h"
#include "itkPoint.h"
#include "itkContinuousIndex.h"
#include "itkFixedArray.h"
#include "itkWeakPointer.h"
#include "itkNeighborhoodAccessorFunctor.h"
namespace itk
{
/** \class Image
* \brief Templated n-dimensional image class.
*
* Images are templated over a pixel type (modeling the dependent
* variables), and a dimension (number of independent variables). The
* container for the pixel data is the ImportImageContainer.
*
* Within the pixel container, images are modeled as arrays, defined by a
* start index and a size.
*
* There are three sets of meta-data describing an image. These are "Region"
* objects that define a portion of an image via a starting index for the image
* array and a size. The ivar LargestPossibleRegion defines the size and
* starting index of the image dataset. The entire image dataset, however,
* need not be resident in memory. The region of the image that is resident in
* memory is defined by the "BufferedRegion". The Buffer is a contiguous block
* of memory. The third set of meta-data defines a region of interest, called
* the "RequestedRegion". The RequestedRegion is used by the pipeline
* execution model to define what a filter is requested to produce.
*
* [RegionIndex, RegionSize] C [BufferIndex, BufferSize]
* C [ImageIndex, ImageSize]
*
* Pixels can be accessed direcly using the SetPixel() and GetPixel()
* methods or can be accessed via iterators. Begin() creates
* an iterator that can walk a specified region of a buffer.
*
* The pixel type may be one of the native types; a Insight-defined
* class type such as Vector; or a user-defined type. Note that
* depending on the type of pixel that you use, the process objects
* (i.e., those filters processing data objects) may not operate on
* the image and/or pixel type. This becomes apparent at compile-time
* because operator overloading (for the pixel type) is not supported.
*
* The data in an image is arranged in a 1D array as [][][][slice][row][col]
* with the column index varying most rapidly. The Index type reverses
* the order so that with Index[0] = col, Index[1] = row, Index[2] = slice,
* ...
*
* \sa ImageContainerInterface
*
* \example DataRepresentation/Image/Image1.cxx
* \example DataRepresentation/Image/Image2.cxx
* \example DataRepresentation/Image/Image2.cxx
* \example DataRepresentation/Image/RGBImage.cxx
* \example DataRepresentation/Image/VectorImage.cxx
*
* \ingroup ImageObjects */
template <class TPixel, unsigned int VImageDimension=2>
class ITK_EXPORT Image : public ImageBase<VImageDimension>
{
public:
/** Standard class typedefs */
typedef Image Self;
typedef ImageBase<VImageDimension> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef WeakPointer<const Self> ConstWeakPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(Image, ImageBase);
/** Pixel typedef support. Used to declare pixel type in filters
* or other operations. */
typedef TPixel PixelType;
/** Typedef alias for PixelType */
typedef TPixel ValueType;
/** Internal Pixel representation. Used to maintain a uniform API
* with Image Adaptors and allow to keep a particular internal
* representation of data while showing a different external
* representation. */
typedef TPixel InternalPixelType;
typedef PixelType IOPixelType;
/** Accessor type that convert data between internal and external
* representations. */
typedef DefaultPixelAccessor< PixelType > AccessorType;
typedef DefaultPixelAccessorFunctor< Self > AccessorFunctorType;
/** Typedef for the functor used to access a neighborhood of pixel
* pointers. */
typedef NeighborhoodAccessorFunctor< Self > NeighborhoodAccessorFunctorType;
/** Dimension of the image. This constant is used by functions that are
* templated over image type (as opposed to being templated over pixel type
* and dimension) when they need compile time access to the dimension of
* the image. */
itkStaticConstMacro(ImageDimension, unsigned int, VImageDimension);
/** Container used to store pixels in the image. */
typedef ImportImageContainer<unsigned long, PixelType> PixelContainer;
/** Index typedef support. An index is used to access pixel values. */
typedef typename Superclass::IndexType IndexType;
typedef typename Superclass::IndexValueType IndexValueType;
/** Offset typedef support. An offset is used to access pixel values. */
typedef typename Superclass::OffsetType OffsetType;
/** Size typedef support. A size is used to define region bounds. */
typedef typename Superclass::SizeType SizeType;
/** Direction typedef support. A matrix of direction cosines. */
typedef typename Superclass::DirectionType DirectionType;
/** Region typedef support. A region is used to specify a subset of an image. */
typedef typename Superclass::RegionType RegionType;
/** Spacing typedef support. Spacing holds the size of a pixel. The
* spacing is the geometric distance between image samples. */
typedef typename Superclass::SpacingType SpacingType;
/** Origin typedef support. The origin is the geometric coordinates
* of the index (0,0). */
typedef typename Superclass::PointType PointType;
/** A pointer to the pixel container. */
typedef typename PixelContainer::Pointer PixelContainerPointer;
typedef typename PixelContainer::ConstPointer PixelContainerConstPointer;
/** Offset typedef (relative position between indices) */
typedef typename Superclass::OffsetValueType OffsetValueType;
/** Allocate the image memory. The size of the image must
* already be set, e.g. by calling SetRegions(). */
void Allocate();
/** Convenience methods to set the LargestPossibleRegion,
* BufferedRegion and RequestedRegion. Allocate must still be called.
*/
void SetRegions(RegionType region)
{
this->SetLargestPossibleRegion(region);
this->SetBufferedRegion(region);
this->SetRequestedRegion(region);
};
void SetRegions(SizeType size)
{
RegionType region; region.SetSize(size);
this->SetLargestPossibleRegion(region);
this->SetBufferedRegion(region);
this->SetRequestedRegion(region);
};
/** Restore the data object to its initial state. This means releasing
* memory. */
virtual void Initialize();
/** Fill the image buffer with a value. Be sure to call Allocate()
* first. */
void FillBuffer (const TPixel& value);
/** \brief Set a pixel value.
*
* Allocate() needs to have been called first -- for efficiency,
* this function does not check that the image has actually been
* allocated yet. */
void SetPixel(const IndexType &index, const TPixel& value)
{
typename Superclass::OffsetValueType offset = this->ComputeOffset(index);
(*m_Buffer)[offset] = value;
}
/** \brief Get a pixel (read only version).
*
* For efficiency, this function does not check that the
* image has actually been allocated yet. */
const TPixel& GetPixel(const IndexType &index) const
{
typename Superclass::OffsetValueType offset = this->ComputeOffset(index);
return ( (*m_Buffer)[offset] );
}
/** \brief Get a reference to a pixel (e.g. for editing).
*
* For efficiency, this function does not check that the
* image has actually been allocated yet. */
TPixel& GetPixel(const IndexType &index)
{
typename Superclass::OffsetValueType offset = this->ComputeOffset(index);
return ( (*m_Buffer)[offset] );
}
/** \brief Access a pixel. This version can be an lvalue.
*
* For efficiency, this function does not check that the
* image has actually been allocated yet. */
TPixel & operator[](const IndexType &index)
{ return this->GetPixel(index); }
/** \brief Access a pixel. This version can only be an rvalue.
*
* For efficiency, this function does not check that the
* image has actually been allocated yet. */
const TPixel& operator[](const IndexType &index) const
{ return this->GetPixel(index); }
/** Return a pointer to the beginning of the buffer. This is used by
* the image iterator class. */
TPixel *GetBufferPointer()
{ return m_Buffer ? m_Buffer->GetBufferPointer() : 0; }
const TPixel *GetBufferPointer() const
{ return m_Buffer ? m_Buffer->GetBufferPointer() : 0; }
/** Return a pointer to the container. */
PixelContainer* GetPixelContainer()
{ return m_Buffer.GetPointer(); }
const PixelContainer* GetPixelContainer() const
{ return m_Buffer.GetPointer(); }
/** Set the container to use. Note that this does not cause the
* DataObject to be modified. */
void SetPixelContainer( PixelContainer *container );
/** Graft the data and information from one image to another. This
* is a convenience method to setup a second image with all the meta
* information of another image and use the same pixel
* container. Note that this method is different than just using two
* SmartPointers to the same image since separate DataObjects are
* still maintained. This method is similar to
* ImageSource::GraftOutput(). The implementation in ImageBase
* simply calls CopyInformation() and copies the region ivars.
* The implementation here refers to the superclass' implementation
* and then copies over the pixel container. */
virtual void Graft(const DataObject *data);
/** Return the Pixel Accessor object */
AccessorType GetPixelAccessor( void )
{ return AccessorType(); }
/** Return the Pixel Accesor object */
const AccessorType GetPixelAccessor( void ) const
{ return AccessorType(); }
/** Return the NeighborhoodAccessor functor */
NeighborhoodAccessorFunctorType GetNeighborhoodAccessor()
{ return NeighborhoodAccessorFunctorType(); }
/** Return the NeighborhoodAccessor functor */
const NeighborhoodAccessorFunctorType GetNeighborhoodAccessor() const
{ return NeighborhoodAccessorFunctorType(); }
/** \brief Get the continuous index from a physical point
*
* Returns true if the resulting index is within the image, false otherwise.
* \sa Transform */
template<class TCoordRep>
bool TransformPhysicalPointToContinuousIndex(
const Point<TCoordRep, VImageDimension>& point,
ContinuousIndex<TCoordRep, VImageDimension>& index ) const
{
// Update the output index
for (unsigned int i = 0; i < VImageDimension; i++)
{
index[i] = static_cast<TCoordRep>( (point[i]- this->m_Origin[i]) / this->m_Spacing[i] );
}
// Now, check to see if the index is within allowed bounds
const bool isInside =
this->GetLargestPossibleRegion().IsInside( index );
return isInside;
}
/** Get the index (discrete) from a physical point.
* Floating point index results are truncated to integers.
* Returns true if the resulting index is within the image, false otherwise
* \sa Transform */
template<class TCoordRep>
bool TransformPhysicalPointToIndex(
const Point<TCoordRep, VImageDimension>& point,
IndexType & index ) const
{
// Update the output index
for (unsigned int i = 0; i < VImageDimension; i++)
{
index[i] = static_cast<IndexValueType>( (point[i]- this->m_Origin[i]) / this->m_Spacing[i] );
}
// Now, check to see if the index is within allowed bounds
const bool isInside =
this->GetLargestPossibleRegion().IsInside( index );
return isInside;
}
/** Get a physical point (in the space which
* the origin and spacing infomation comes from)
* from a continuous index (in the index space)
* \sa Transform */
template<class TCoordRep>
void TransformContinuousIndexToPhysicalPoint(
const ContinuousIndex<TCoordRep, VImageDimension>& index,
Point<TCoordRep, VImageDimension>& point ) const
{
for (unsigned int i = 0; i < VImageDimension; i++)
{
point[i] = static_cast<TCoordRep>( this->m_Spacing[i] * index[i] + this->m_Origin[i] );
}
}
/** Get a physical point (in the space which
* the origin and spacing infomation comes from)
* from a discrete index (in the index space)
*
* \sa Transform */
template<class TCoordRep>
void TransformIndexToPhysicalPoint(
const IndexType & index,
Point<TCoordRep, VImageDimension>& point ) const
{
for (unsigned int i = 0; i < VImageDimension; i++)
{
point[i] = static_cast<TCoordRep>( this->m_Spacing[i] *
static_cast<double>( index[i] ) + this->m_Origin[i] );
}
}
/** Take a vector or covariant vector that has been computed in the
* coordinate system parallel to the image grid and rotate it by the
* direction cosines in order to get it in terms of the coordinate system of
* the image acquisition device. This implementation in the Image only needs
* to copy the input vector or covariant vector given that the Image class
* implicitly has an Identity Matrix as direction cosines. The arguments of
* the method are of type FixedArray to make possible to use this method with
* both Vector and CovariantVector. The Method is implemented differently in
* the itk::OrientedImage.
*
* \sa OrientedImage
*/
template<class TCoordRep>
void TransformLocalVectorToPhysicalVector(
const FixedArray<TCoordRep, VImageDimension> & inputGradient,
FixedArray<TCoordRep, VImageDimension> & outputGradient ) const
{
for( unsigned int i = 0; i < VImageDimension; i++ )
{
outputGradient[i] = inputGradient[i];
}
}
protected:
Image();
void PrintSelf(std::ostream& os, Indent indent) const;
virtual ~Image() {};
private:
Image(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
/** Memory for the current buffer. */
PixelContainerPointer m_Buffer;
};
} // end namespace itk
// Define instantiation macro for this template.
#define ITK_TEMPLATE_Image(_, EXPORT, x, y) namespace itk { \
_(2(class EXPORT Image< ITK_TEMPLATE_2 x >)) \
namespace Templates { typedef Image< ITK_TEMPLATE_2 x > Image##y; } \
}
#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkImage+-.h"
#endif
#if ITK_TEMPLATE_TXX
# include "itkImage.txx"
#endif
#endif
|