1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMaximumRatioDecisionRule.h,v $
Language: C++
Date: $Date: 2007-12-23 17:59:28 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __MaximumRatioDecisionRule_h
#define __MaximumRatioDecisionRule_h
#include "itkWin32Header.h"
#include <vector>
#include "vnl/vnl_matrix.h"
#include "itkNumericTraits.h"
#include "itkDecisionRuleBase.h"
namespace itk {
/** \class MaximumRatioDecisionRule
* \brief This rule returns \f$i\f$ if
* \f$\frac{f_{i}(\overrightarrow{x})}{f_{j}(\overrightarrow{x})} >
* \frac{K_{j}}{K_{i}}\f$ for all \f$j \not= i\f$,
* where the \f$i\f$ is the index of a class which has
* membership function \f$f_{i}\f$ and its prior value
* (usually, the a priori probability or the size of a class) is
* \f$K_{i}\f$
*
* Users should set the a priori values before calling the Evaluate method.
*
* \sa MaximumDecisionRule, MinimumDecisionRule
*/
class ITKCommon_EXPORT MaximumRatioDecisionRule :
public DecisionRuleBase
{
public:
/** Standard class typedefs */
typedef MaximumRatioDecisionRule Self ;
typedef DecisionRuleBase Superclass;
typedef SmartPointer<Self> Pointer;
/** Run-time type information (and related methods) */
itkTypeMacro(MaximumRatioDecisionRule, DecisionRuleBase);
/** Standard New() method support */
itkNewMacro(Self) ;
typedef float APrioriValueType ;
typedef std::vector< APrioriValueType > APrioriVectorType ;
typedef APrioriVectorType::size_type APrioriVectorSizeType ;
/** Types for the arguments that are acceptable in the Evaluate() method */
typedef Superclass::VectorType VectorType;
typedef Superclass::ArrayType ArrayType;
/** The return value of this function is a class label.
* Basically, using its internal logic based on the discriminant
* scores, this function decides best class label and return it.
*/
virtual unsigned int Evaluate( const VectorType &discriminantScores) const;
/** The return value of this function is a class label.
* Basically, using its internal logic based on the discriminant
* scores, this function decides best class label and return it.
*/
virtual unsigned int Evaluate( const ArrayType &discriminantScores) const;
/** Sets the a priori probabilities */
void SetAPriori(APrioriVectorType& values) ;
protected:
MaximumRatioDecisionRule() ;
virtual ~MaximumRatioDecisionRule() {}
private:
/** Number of classes */
APrioriVectorSizeType m_NumberOfClasses ;
/** a priori probability ratio matrix: internal use */
vnl_matrix< double > m_APrioriRatioMatrix ;
} ; // end of class
} // end of namespace
#endif
|