File: itkNeighborhoodIterator.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (220 lines) | stat: -rw-r--r-- 6,353 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkNeighborhoodIterator.txx,v $
  Language:  C++
  Date:      $Date: 2006-01-11 19:43:32 $
  Version:   $Revision: 1.28 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkNeighborhoodIterator_txx
#define _itkNeighborhoodIterator_txx
namespace itk {

template<class TImage, class TBoundaryCondition>
void
NeighborhoodIterator<TImage, TBoundaryCondition>
::SetPixel(const unsigned n, const PixelType& v)
{ 
  register unsigned int i;
  OffsetType OverlapLow, OverlapHigh, temp, offset;
  bool flag;

  if (this->m_NeedToUseBoundaryCondition == false)
    { this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v ); }
  
  // Is this whole neighborhood in bounds?
  else if (this->InBounds()) this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v );
  else
    {
    temp = this->ComputeInternalIndex(n);
      
    // Calculate overlap
    for (i=0; i<Superclass::Dimension; i++)
      {
      OverlapLow[i] = this->m_InnerBoundsLow[i] - this->m_Loop[i];
      OverlapHigh[i]=
        static_cast<OffsetValueType>(this->GetSize(i)
                                     - ( (this->m_Loop[i]+2) - this->m_InnerBoundsHigh[i]) );
      }

    flag = true;

    // Is this pixel in bounds?
    for (i=0; i<Superclass::Dimension; ++i)
      {
      if (this->m_InBounds[i]) offset[i] = 0; // this dimension in bounds
      else  // part of this dimension spills out of bounds
        {
        if (temp[i] < OverlapLow[i])
          {
          flag = false;
          offset[i] = OverlapLow[i] - temp[i];
          }
        else if ( OverlapHigh[i] < temp[i] )
          {
          flag = false;
          offset[i] =  OverlapHigh[i] - temp[i];
          }
        else offset[i] = 0;
        }
      }

    if (flag)
      {
      this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v );
      }
    else
      { // Attempt to write out of bounds
      RangeError e(__FILE__, __LINE__);
      e.SetLocation(ITK_LOCATION);
      e.SetDescription("Attempt to write out of bounds.");
      throw e;
      };
    }
}

template<class TImage, class TBoundaryCondition>
void
NeighborhoodIterator<TImage, TBoundaryCondition>
::SetPixel(const unsigned n, const PixelType& v, bool &status)
{
  register unsigned int i;
  OffsetType temp;

  typename OffsetType::OffsetValueType OverlapLow, OverlapHigh;

  if (this->m_NeedToUseBoundaryCondition == false)
    {
    status = true;
    this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v );
    }
  
  // Is this whole neighborhood in bounds?
  else if (this->InBounds())
    {
    this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v );
    status = true;
    return;
    }
  else
    {
    temp = this->ComputeInternalIndex(n);
      
    // Calculate overlap.
    // Here, we are checking whether the particular pixel in the
    // neighborhood is within the bounds (when the neighborhood is not
    // completely in bounds, it is usually partly in bounds)
    for (i=0; i<Superclass::Dimension; i++)
      {
      if (! this->m_InBounds[i]) // Part of dimension spills out of bounds
        {
        OverlapLow = this->m_InnerBoundsLow[i] - this->m_Loop[i];
        OverlapHigh=
          static_cast<OffsetValueType>(this->GetSize(i)
                                       - ( (this->m_Loop[i]+2) - this->m_InnerBoundsHigh[i]) );
        if (temp[i] < OverlapLow || OverlapHigh < temp[i])
          {
          status = false;
          return;
          }
        }
      }
      
    this->m_NeighborhoodAccessorFunctor.Set( this->operator[](n), v );
    status = true;
    }
}

  
template<class TImage, class TBoundaryCondition>
void
NeighborhoodIterator<TImage, TBoundaryCondition>
::PrintSelf(std::ostream &os, Indent indent) const
{
  os << indent;
  os << "NeighborhoodIterator {this= " << this << "}" << std::endl;
  Superclass::PrintSelf(os, indent.GetNextIndent());
}

template<class TImage, class TBoundaryCondition>
void
NeighborhoodIterator<TImage, TBoundaryCondition>
::SetNeighborhood(const NeighborhoodType &N)
{
  register unsigned int i;
  OffsetType OverlapLow, OverlapHigh, temp;
  bool flag;
      
  const Iterator _end = this->End();
  Iterator this_it;
  typename  NeighborhoodType::ConstIterator N_it;

  if (this->m_NeedToUseBoundaryCondition == false)
    {
    for (N_it = N.Begin(), this_it = this->Begin(); this_it < _end;
         this_it++, N_it++)
      {
      this->m_NeighborhoodAccessorFunctor.Set(*this_it, *N_it);
      }
    }
  else if (this->InBounds())
    {
    for (N_it = N.Begin(), this_it = this->Begin(); this_it < _end;
         this_it++, N_it++)
      {
      this->m_NeighborhoodAccessorFunctor.Set(*this_it, *N_it);
      }  
    }
  else
    {
    // Calculate overlap & initialize index
    for (i=0; i<Superclass::Dimension; i++)
      {
      OverlapLow[i] =this->m_InnerBoundsLow[i] - this->m_Loop[i];
      OverlapHigh[i]=
        static_cast<OffsetValueType>(this->GetSize(i) - (this->m_Loop[i]-this->m_InnerBoundsHigh[i])-1);
      temp[i] = 0;
      }
      
    // Iterate through neighborhood
    for (N_it = N.Begin(), this_it = this->Begin();
         this_it < _end; N_it++, this_it++)
      {
      flag = true;
      for (i=0; i<Superclass::Dimension; ++i)
        {
        if (!this->m_InBounds[i] && ((temp[i] < OverlapLow[i])
                               || (temp[i] >= OverlapHigh[i])) )
          {
          flag=false;
          break;
          }
        }
          
      if (flag)
        {
        this->m_NeighborhoodAccessorFunctor.Set(*this_it, *N_it);
        }
          
      for (i=0; i<Superclass::Dimension; ++i)  // Update index
        {
        temp[i]++;
        if ( (unsigned int)(temp[i]) == this->GetSize(i) ) temp[i]= 0;
        else break;
        }
      }
      
    }
}

} // namespace itk

#endif