1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkOrientedImage.h,v $
Language: C++
Date: $Date: 2008-02-04 12:34:11 $
Version: $Revision: 1.21 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOrientedImage_h
#define __itkOrientedImage_h
#include "itkImage.h"
#include "itkImageTransformHelper.h"
namespace itk
{
/** \class OrientedImage
* \brief Templated n-dimensional oriented image class.
*
* \note
* This work is part of the National Alliance for Medical Image Computing
* (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
* for Medical Research, Grant U54 EB005149.
*
* \ingroup ImageObjects */
template <class TPixel, unsigned int VImageDimension>
class ITK_EXPORT OrientedImage : public Image<TPixel, VImageDimension>
{
public:
/** Standard class typedefs */
typedef OrientedImage Self;
typedef Image<TPixel, VImageDimension> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef WeakPointer<const Self> ConstWeakPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(OrientedImage, Image);
/** Index typedef support. An index is used to access pixel values. */
typedef typename Superclass::IndexType IndexType;
/** Direction typedef support. The direction cosines of the image. */
typedef typename Superclass::DirectionType DirectionType;
/** Spacing typedef support. Spacing holds the size of a pixel. The
* spacing is the geometric distance between image samples. */
typedef typename Superclass::SpacingType SpacingType;
typedef typename Superclass::AccessorType AccessorType;
typedef typename Superclass::AccessorFunctorType AccessorFunctorType;
typedef typename Superclass::IOPixelType IOPixelType;
/** Tyepdef for the functor used to access a neighborhood of pixel pointers.*/
typedef NeighborhoodAccessorFunctor< Self >
NeighborhoodAccessorFunctorType;
/** Return the NeighborhoodAccessor functor. This method is called by the
* neighborhood iterators. */
NeighborhoodAccessorFunctorType GetNeighborhoodAccessor()
{ return NeighborhoodAccessorFunctorType(); }
/** Return the NeighborhoodAccessor functor. This method is called by the
* neighborhood iterators. */
const NeighborhoodAccessorFunctorType GetNeighborhoodAccessor() const
{ return NeighborhoodAccessorFunctorType(); }
/** Set the spacing of the image and precompute the transforms for
* the image. */
virtual void SetSpacing (const SpacingType spacing)
{
Superclass::SetSpacing(spacing);
DirectionType scale;
for (unsigned int i=0; i < VImageDimension; i++)
{
scale[i][i] = this->m_Spacing[i];
}
m_IndexToPhysicalPoint = this->m_Direction * scale;
m_PhysicalPointToIndex = m_IndexToPhysicalPoint.GetInverse();
}
virtual void SetSpacing (const double spacing[VImageDimension])
{
Superclass::SetSpacing(spacing);
DirectionType scale;
for (unsigned int i=0; i < VImageDimension; i++)
{
scale[i][i] = this->m_Spacing[i];
}
m_IndexToPhysicalPoint = this->m_Direction * scale;
m_PhysicalPointToIndex = m_IndexToPhysicalPoint.GetInverse();
}
virtual void SetSpacing (const float spacing[VImageDimension])
{
Superclass::SetSpacing(spacing);
DirectionType scale;
for (unsigned int i=0; i < VImageDimension; i++)
{
scale[i][i] = this->m_Spacing[i];
}
m_IndexToPhysicalPoint = this->m_Direction * scale;
m_PhysicalPointToIndex = m_IndexToPhysicalPoint.GetInverse();
}
/** Set the direction of the image and precompute the transforms for
* the image. */
virtual void SetDirection (const DirectionType direction)
{
Superclass::SetDirection(direction);
DirectionType scale;
for (unsigned int i=0; i < VImageDimension; i++)
{
scale[i][i] = this->m_Spacing[i];
}
m_IndexToPhysicalPoint = this->m_Direction * scale;
m_PhysicalPointToIndex = m_IndexToPhysicalPoint.GetInverse();
}
/** \brief Get the continuous index from a physical point
*
* Returns true if the resulting index is within the image, false otherwise.
* \sa Transform */
template<class TCoordRep>
bool TransformPhysicalPointToContinuousIndex(
const Point<TCoordRep, VImageDimension>& point,
ContinuousIndex<TCoordRep, VImageDimension>& index ) const
{
Vector<double, VImageDimension> cvector;
cvector = m_PhysicalPointToIndex * (point - this->m_Origin);
for (unsigned int i = 0 ; i < VImageDimension ; i++)
{
index[i] = static_cast<TCoordRep>(cvector[i]);
}
// Now, check to see if the index is within allowed bounds
const bool isInside =
this->GetLargestPossibleRegion().IsInside( index );
return isInside;
}
/** Get the index (discrete) from a physical point.
* Floating point index results are truncated to integers.
* Returns true if the resulting index is within the image, false otherwise
* \sa Transform */
#if 1
template<class TCoordRep>
bool TransformPhysicalPointToIndex(
const Point<TCoordRep, VImageDimension>& point,
IndexType & index ) const
{
ImageTransformHelper<VImageDimension,VImageDimension-1,VImageDimension-1>::TransformPhysicalPointToIndex(
this->m_PhysicalPointToIndex, this->m_Origin, point, index);
// Now, check to see if the index is within allowed bounds
const bool isInside =
this->GetLargestPossibleRegion().IsInside( index );
return isInside;
}
#else
template<class TCoordRep>
bool TransformPhysicalPointToIndex(
const Point<TCoordRep, VImageDimension>& point,
IndexType & index ) const
{
typedef typename IndexType::IndexValueType IndexValueType;
for (unsigned int i = 0; i < VImageDimension; i++)
{
index[i] = 0.0;
for (unsigned int j = 0; j < VImageDimension; j++)
{
index[i] +=
m_PhysicalPointToIndex[i][j] * (point[j] - this->m_Origin[j]);
}
}
// Now, check to see if the index is within allowed bounds
const bool isInside =
this->GetLargestPossibleRegion().IsInside( index );
return isInside;
}
#endif
/** Get a physical point (in the space which
* the origin and spacing infomation comes from)
* from a continuous index (in the index space)
* \sa Transform */
template<class TCoordRep>
void TransformContinuousIndexToPhysicalPoint(
const ContinuousIndex<TCoordRep, VImageDimension>& index,
Point<TCoordRep, VImageDimension>& point ) const
{
Vector<double,VImageDimension> cvector;
for (unsigned int i = 0 ; i < VImageDimension ; i++)
{
cvector[i] = index[i];
}
point = this->m_Origin + m_IndexToPhysicalPoint * cvector;
}
/** Get a physical point (in the space which
* the origin and spacing infomation comes from)
* from a discrete index (in the index space)
*
* \sa Transform */
#if 1
template<class TCoordRep>
void TransformIndexToPhysicalPoint(
const IndexType & index,
Point<TCoordRep, VImageDimension>& point ) const
{
ImageTransformHelper<VImageDimension,VImageDimension-1,VImageDimension-1>::TransformIndexToPhysicalPoint(
this->m_IndexToPhysicalPoint, this->m_Origin, index, point);
}
#else
template<class TCoordRep>
void TransformIndexToPhysicalPoint(
const IndexType & index,
Point<TCoordRep, VImageDimension>& point ) const
{
for (unsigned int i = 0; i < VImageDimension; i++)
{
point[i] = this->m_Origin[i];
for (unsigned int j = 0; j < VImageDimension; j++)
{
point[i] += m_IndexToPhysicalPoint[i][j] * index[j];
}
}
}
#endif
/** Take a vector or covariant vector that has been computed in the
* coordinate system parallel to the image grid and rotate it by the
* direction cosines in order to get it in terms of the coordinate system of
* the image acquisition device. This implementation in the OrientedImage
* multiply the array (vector or covariant vector) by the matrix of Direction
* Cosines. The arguments of the method are of type FixedArray to make
* possible to use this method with both Vector and CovariantVector.
* The Method is implemented differently in the itk::Image.
*
* \sa Image
*/
template<class TCoordRep>
void TransformLocalVectorToPhysicalVector(
const FixedArray<TCoordRep, VImageDimension> & inputGradient,
FixedArray<TCoordRep, VImageDimension> & outputGradient ) const
{
//
// This temporary implementation should be replaced with Template MetaProgramming.
//
#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
const DirectionType & direction = this->GetDirection();
for (unsigned int i = 0 ; i < VImageDimension ; i++)
{
typedef typename NumericTraits<TCoordRep>::AccumulateType CoordSumType;
CoordSumType sum = NumericTraits<CoordSumType>::Zero;
for (unsigned int j = 0; j < VImageDimension; j++)
{
sum += direction[i][j] * inputGradient[j];
}
outputGradient[i] = static_cast<TCoordRep>( sum );
}
#else
for (unsigned int i = 0 ; i < VImageDimension ; i++)
{
outputGradient[i] = inputGradient[i];
}
#endif
}
protected:
OrientedImage();
virtual ~OrientedImage() {};
private:
OrientedImage(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
DirectionType m_IndexToPhysicalPoint;
DirectionType m_PhysicalPointToIndex;
};
} // end namespace itk
// Define instantiation macro for this template.
#define ITK_TEMPLATE_OrientedImage(_, EXPORT, x, y) namespace itk { \
_(2(class EXPORT OrientedImage< ITK_TEMPLATE_2 x >)) \
namespace Templates { typedef Image< ITK_TEMPLATE_2 x > OrientedImage##y; } \
}
#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkOrientedImage+-.h"
#endif
#if ITK_TEMPLATE_TXX
# include "itkOrientedImage.txx"
#endif
#endif
|