1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkOrthogonallyCorrected2DParametricPath.cxx,v $
Language: C++
Date: $Date: 2007-12-23 17:59:29 $
Version: $Revision: 1.8 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkOrthogonallyCorrected2DParametricPath.h"
#include <math.h>
namespace itk
{
OrthogonallyCorrected2DParametricPath::OutputType
OrthogonallyCorrected2DParametricPath
::Evaluate( const InputType & inputValue ) const
{
InputType input = inputValue; // we may want to remap the input
InputType inputRange;
InputType normalizedInput;
OutputType output;
OrthogonalCorrectionTableSizeType numOrthogonalCorrections;
double softOrthogonalCorrectionTableIndex;
double Correction, Correction1, Correction2;
VectorType originalDerivative;
numOrthogonalCorrections = m_OrthogonalCorrectionTable->Size();
// If the original path is closed, then tail input is remapped to head input
if( m_OriginalPath->EvaluateToIndex(m_OriginalPath->EndOfInput()) ==
m_OriginalPath->EvaluateToIndex(m_OriginalPath->StartOfInput()) )
{
if( input >= m_OriginalPath->EndOfInput() )
{
// use the starting input value instead of the ending input value
input = m_OriginalPath->StartOfInput();
}
}
inputRange = m_OriginalPath->EndOfInput() - m_OriginalPath->StartOfInput();
normalizedInput = ( input - m_OriginalPath->StartOfInput() ) / inputRange;
output.Fill(0);
// Find the linearly interpolated offset error value for this exact time.
softOrthogonalCorrectionTableIndex = normalizedInput * numOrthogonalCorrections;
Correction1 = m_OrthogonalCorrectionTable->ElementAt(
int(softOrthogonalCorrectionTableIndex) );
Correction2 = m_OrthogonalCorrectionTable->ElementAt(
int(softOrthogonalCorrectionTableIndex+1) % numOrthogonalCorrections );
Correction = Correction1 + (Correction2-Correction1)*
( softOrthogonalCorrectionTableIndex -
int(softOrthogonalCorrectionTableIndex) );
// Find the direction of the offset
originalDerivative = m_OriginalPath->EvaluateDerivative(input);
originalDerivative.Normalize();
// Find the actual point along this corrected path
output = m_OriginalPath->Evaluate(input);
output[0] -= Correction*originalDerivative[1];
output[1] += Correction*originalDerivative[0];
return output;
}
void
OrthogonallyCorrected2DParametricPath
::SetOriginalPath( const OriginalPathType *originalPath )
{
itkDebugMacro("setting OriginalPath to " << originalPath );
if (this->m_OriginalPath != originalPath)
{
this->m_OriginalPath = originalPath;
// This is the important line that is not in itkSetObjectMacro
this->m_DefaultInputStepSize = m_OriginalPath->GetDefaultInputStepSize();
this->Modified();
}
}
/**
* Constructor
*/
OrthogonallyCorrected2DParametricPath
::OrthogonallyCorrected2DParametricPath()
{
m_OriginalPath = NULL;
m_OrthogonalCorrectionTable = OrthogonalCorrectionTableType::New();
}
/**
* Standard "PrintSelf" method
*/
void
OrthogonallyCorrected2DParametricPath
::PrintSelf( std::ostream& os, Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Original Path: " << m_OriginalPath << std::endl;
os << indent << "Correction Table: " << m_OrthogonalCorrectionTable << std::endl;
}
} // end namespaceitk
|