File: itkTriangleCell.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (713 lines) | stat: -rw-r--r-- 16,740 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkTriangleCell.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-07 13:33:59 $
  Version:   $Revision: 1.48 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkTriangleCell_txx
#define _itkTriangleCell_txx
#include "itkTriangleCell.h"
#include "vnl/algo/vnl_determinant.h"

namespace itk
{

/**
 * Standard CellInterface:
 */
template <typename TCellInterface>
void
TriangleCell< TCellInterface >
::MakeCopy(CellAutoPointer & cellPointer) const
{
  cellPointer.TakeOwnership( new Self );
  cellPointer->SetPointIds(this->GetPointIds());
}

  
/**
 * Standard CellInterface:
 * Get the topological dimension of this cell.
 */
template <typename TCellInterface>
unsigned int
TriangleCell< TCellInterface >
::GetDimension(void) const
{
  return Self::CellDimension;
}


/**
 * Standard CellInterface:
 * Get the number of points required to define the cell.
 */
template <typename TCellInterface>
unsigned int
TriangleCell< TCellInterface >
::GetNumberOfPoints(void) const
{
  return Self::NumberOfPoints;
}  


/**
 * Standard CellInterface:
 * Get the number of boundary features of the given dimension.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::CellFeatureCount
TriangleCell< TCellInterface >
::GetNumberOfBoundaryFeatures(int dimension) const
{
  switch (dimension)
    {
    case 0: return GetNumberOfVertices();
    case 1: return GetNumberOfEdges();
    default: return 0;
    }
}


/**
 * Standard CellInterface:
 * Get the boundary feature of the given dimension specified by the given
 * cell feature Id.
 * The Id can range from 0 to GetNumberOfBoundaryFeatures(dimension)-1.
 */
template <typename TCellInterface>
bool
TriangleCell< TCellInterface >
::GetBoundaryFeature(int dimension, CellFeatureIdentifier featureId,
                     CellAutoPointer& cellPointer )
{
  switch (dimension)
    {
    case 0: 
    {
    VertexAutoPointer vertexPointer;
    if( this->GetVertex(featureId,vertexPointer) )
      {
      TransferAutoPointer(cellPointer,vertexPointer);
      return true;
      }
    else
      {
      cellPointer.Reset();
      return false;
      }
    break;
    }
    case 1: 
    {
    EdgeAutoPointer edgePointer;
    if( this->GetEdge(featureId,edgePointer) )
      {
      TransferAutoPointer(cellPointer,edgePointer);
      return true;
      }
    else
      {
      cellPointer.Reset();
      return false;
      }
    break;
    }

    default: 
    {
    cellPointer.Reset();
    return false;
    }
    }
  return false;
}


/**
 * Standard CellInterface:
 * Set the point id list used by the cell.  It is assumed that the given
 * iterator can be incremented and safely de-referenced enough times to 
 * get all the point ids needed by the cell.
 */
template <typename TCellInterface>
void
TriangleCell< TCellInterface >
::SetPointIds(PointIdConstIterator first)
{
  PointIdConstIterator ii(first);
  for(unsigned int i=0; i < Self::NumberOfPoints ; ++i)
    {
    m_PointIds[i] = *ii++;
    }
}


/**
 * Standard CellInterface:
 * Set the point id list used by the cell.  It is assumed that the range
 * of iterators [first, last) contains the correct number of points needed to
 * define the cell.  The position *last is NOT referenced, so it can safely
 * be one beyond the end of an array or other container.
 */
template <typename TCellInterface>
void
TriangleCell< TCellInterface >
::SetPointIds(PointIdConstIterator first, PointIdConstIterator last)
{
  int localId=0;
  PointIdConstIterator ii(first);
  
  while(ii != last)
    {
    m_PointIds[localId++] = *ii++;
    }
}


/**
 * Standard CellInterface:
 * Set an individual point identifier in the cell.
 */
template <typename TCellInterface>
void
TriangleCell< TCellInterface >
::SetPointId(int localId, PointIdentifier ptId)
{
  m_PointIds[localId] = ptId;
}


/**
 * Standard CellInterface:
 * Get a begin iterator to the list of point identifiers used by the cell.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::PointIdIterator
TriangleCell< TCellInterface >
::PointIdsBegin(void)
{
  return &m_PointIds[0];
}


/**
 * Standard CellInterface:
 * Get a const begin iterator to the list of point identifiers used
 * by the cell.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::PointIdConstIterator
TriangleCell< TCellInterface >
::PointIdsBegin(void) const
{
  return &m_PointIds[0];
}


/**
 * Standard CellInterface:
 * Get an end iterator to the list of point identifiers used by the cell.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::PointIdIterator
TriangleCell< TCellInterface >
::PointIdsEnd(void)
{
  return &m_PointIds[Self::NumberOfPoints-1] + 1;
}


/**
 * Standard CellInterface:
 * Get a const end iterator to the list of point identifiers used
 * by the cell.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::PointIdConstIterator
TriangleCell< TCellInterface >
::PointIdsEnd(void) const
{
  return &m_PointIds[Self::NumberOfPoints-1] + 1;
}


/**
 * Triangle-specific:
 * Get the number of vertices defining the triangle.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::CellFeatureCount
TriangleCell< TCellInterface >
::GetNumberOfVertices(void) const
{
  return Self::NumberOfVertices;
}


/**
 * Triangle-specific:
 * Get the number of edges defined for the triangle.
 */
template <typename TCellInterface>
typename TriangleCell< TCellInterface >::CellFeatureCount
TriangleCell< TCellInterface >
::GetNumberOfEdges(void) const
{
  return Self::NumberOfEdges;
}

/**
 * Triangle-specific:
 * Get the vertex specified by the given cell feature Id.
 * The Id can range from 0 to GetNumberOfVertices()-1.
 */
template <typename TCellInterface>
bool
TriangleCell< TCellInterface >
::GetVertex(CellFeatureIdentifier vertexId,VertexAutoPointer & vertexPointer )
{
  VertexType * vert = new VertexType;
  vert->SetPointId(0, m_PointIds[vertexId]);
  vertexPointer.TakeOwnership( vert );
  return true;  
}

/**
 * Triangle-specific:
 * Get the edge specified by the given cell feature Id.
 * The Id can range from 0 to GetNumberOfEdges()-1.
 */
template <typename TCellInterface>
bool
TriangleCell< TCellInterface >
::GetEdge(CellFeatureIdentifier edgeId, EdgeAutoPointer & edgePointer )
{
  EdgeType * edge = new EdgeType;
  for(int i=0; i < EdgeType::NumberOfPoints; ++i)
    {
    edge->SetPointId(i, m_PointIds[ m_Edges[edgeId][i] ]);
    }
  edgePointer.TakeOwnership( edge );
  return true;
}



/** Compute distance to finite line. Returns parametric coordinate t 
 *  and point location on line. */
template <typename TCellInterface>
double
TriangleCell< TCellInterface >
::DistanceToLine(PointType x, PointType p1, PointType p2, 
                              double &t, CoordRepType *closestPoint)
{
  PointType temp;

  // convert from CoordRepType * to PointType:
  for (unsigned int i = 0; i < PointDimension; i++)
    {
    temp[i] = closestPoint[i];
    } 

  // Compute the squared distance to the line:
  const double distance2 = this->DistanceToLine (x, p1, p2, t, temp);

  // convert from PointType to CoordRepType * :
  for (unsigned int j = 0; j < PointDimension; j++)
    {
    closestPoint[j] = temp[j];
    } 

  return distance2;
}

template <typename TCellInterface>
double
TriangleCell< TCellInterface >
::DistanceToLine(PointType x, PointType p1, PointType p2, 
                              double &t, PointType &closestPoint)
{
  double denom, num;
  PointType p21;
  PointType closest;
  double tolerance;
  //
  //   Determine appropriate vectors
  // 
  unsigned int i;
  for(i=0;i<PointDimension;i++)
    {
    p21[i] = p2[i] - p1[i];
    }

  //
  //   Get parametric location
  //
  num = 0;
  denom = 0;
  for(i=0;i<PointDimension;i++)
    {
    num += p21[i]*(x[i]-p1[i]);
    denom += p21[i]*p21[i];
    }

  // trying to avoid an expensive fabs
  tolerance = 1.e-05*num;
  if (tolerance < 0.0)
    {
    tolerance = -tolerance;
    }
  if ( -tolerance < denom && denom < tolerance ) //numerically bad!
    {
    closest = p1; //arbitrary, point is (numerically) far away
    }
  //
  // If parametric coordinate is within 0<=p<=1, then the point is closest to
  // the line.  Otherwise, it's closest to a point at the end of the line.
  //
  else if ( (t=num/denom) < 0.0 )
    {
    closest = p1;
    }
  else if ( t > 1.0 )
    {
    closest = p2;
    }
  else
    {
    for(i=0;i<PointDimension;i++)
      {
      closest[i] = p1[i] + t*p21[i];
      }
    }
    
  for(i=0;i<PointDimension;i++)
    {
    closestPoint[i] = closest[i]; 
    }

  double dist = 0;
      
  for(i=0;i<PointDimension;i++)
    {
    const double value = closest[i] - x[i];
    dist += value * value;
    }

  return dist;
}

/** Evaluate the position of a given point inside the cell 
 *  This only works in 3D since cross product is not defined for higher dimensions */
template <typename TCellInterface>
bool
TriangleCell< TCellInterface >
::EvaluatePosition(CoordRepType* x,
                   PointsContainer* points,
                   CoordRepType* closestPoint,
                   CoordRepType pcoord[3],
                   double* minDist2,
                   InterpolationWeightType* weights)
{
 
  if(PointDimension != 3)
    {
    itkWarningMacro("TriangleCell::EvaluatePosition() only works with 3D points");
    std::cout << "TriangleCell::EvaluatePosition() only works with 3D points" << std::endl;
    return false;
    }


  unsigned int i, j;
  double fabsn;
  double rhs[2], c1[2], c2[2], n[3];
  double det;
  double maxComponent;
  unsigned int idx=0, indices[2];
  double dist2Point, dist2Line1, dist2Line2;
  PointType closest; 
  PointType closestPoint1, closestPoint2, cp;
  CoordRepType pcoords[3];

  if(!points)
    {
    return false;
    }
  
  // Get normal for triangle, only the normal direction is needed, i.e. the
  // normal need not be normalized (unit length)
  //
  PointType pt1 = points->GetElement(m_PointIds[0]);
  PointType pt2 = points->GetElement(m_PointIds[1]);
  PointType pt3 = points->GetElement(m_PointIds[2]);


  // This is the solution for 3D points
  double ax, ay, az, bx, by, bz;

  // order is important!!! maintain consistency with triangle vertex order 
  ax = pt3[0] - pt2[0]; ay = pt3[1] - pt2[1]; az = pt3[2] - pt2[2];
  bx = pt1[0] - pt2[0]; by = pt1[1] - pt2[1]; bz = pt1[2] - pt2[2];

  n[0] = (ay * bz - az * by);
  n[1] = (az * bx - ax * bz);
  n[2] = (ax * by - ay * bx);
 
  // Project point to plane
  double t, n2;
  PointType xo;

  for(i=0;i<PointDimension;i++)
    {
    xo[i] = x[i] - pt1[i];
    }

  t = 0;
  n2 = 0;

  for(i=0;i<PointDimension;i++)
    {
    t += n[i]*xo[i];
    n2 += n[i]*n[i];
    }

  if (n2 != 0)
    {
    for(i=0;i<PointDimension;i++)
      {
      cp[i] = x[i] - t * n[i]/n2;
      }
    }
  else
    {
    for(i=0;i<PointDimension;i++)
      {
      cp[i] = x[i];
      }
    }  

  // Construct matrices.  Since we have over determined system, need to find
  // which 2 out of 3 equations to use to develop equations. (Any 2 should 
  // work since we've projected point to plane.)
  //
  for (maxComponent=0.0, i=0; i<3; i++)
    {
    // trying to avoid an expensive call to vcl_fabs()
    if (n[i] < 0)
      {
      fabsn = -n[i];
      }
    else
      {
      fabsn = n[i];
      }
    if (fabsn > maxComponent)
      {
      maxComponent = fabsn;
      idx = i;
      }
    }

  for (j=0, i=0; i<3; i++)  
    {
    if ( i != idx )
      {
      indices[j++] = i;
      }
    }
  
  for (i=0; i<2; i++)
    {
    rhs[i] = cp[indices[i]] - pt3[indices[i]];
    c1[i] = pt1[indices[i]] - pt3[indices[i]];
    c2[i] = pt2[indices[i]] - pt3[indices[i]];
    }

  
  if ( (det = c1[0]*c2[1] - c2[0]*c1[1]) == 0.0 )
    {
    pcoords[0] = pcoords[1] = pcoords[2] = 0.0;
    if(pcoord)
      {
      pcoord[0] = pcoords[0]; 
      pcoord[1] = pcoords[1];
      pcoord[2] = pcoords[2];
      }
    return false;
    }

  const double _t1 = rhs[0]*c2[1] - c2[0]*rhs[1];
  const double _t2 = c1[0]*rhs[1] - rhs[0]*c1[1];
  pcoords[0] = _t1 / det;
  pcoords[1] = _t2 / det;
  pcoords[2] = (det - (_t1 + _t2))/det;

  // Okay, now find closest point to element
  //
  if(weights)
    {
    weights[0] = pcoords[2];
    weights[1] = pcoords[0];
    weights[2] = pcoords[1];
    }

  // Zero with epsilon
  const double zwe = -NumericTraits<double>::min();
  // One with epsilon
  const double owe = 1.0 + NumericTraits<double>::min();

  if ( pcoords[0] >= zwe  && pcoords[0] <= owe &&
       pcoords[1] >= zwe  && pcoords[1] <= owe &&
       pcoords[2] >= zwe  && pcoords[2] <= owe )
    {
    //projection distance
    if (closestPoint)
      { // Compute the Distance 2 Between Points
      *minDist2 = 0;
      for(i=0;i<PointDimension;i++)
        {
        const double val = cp[i] - x[i];
        *minDist2 += val * val;
        closestPoint[i] = cp[i];
        }
      }

    if(pcoord)
      {
      pcoord[0] = pcoords[0]; 
      pcoord[1] = pcoords[1];
      pcoord[2] = pcoords[2];
      }
    return true;
    }
  else
    {
    if (closestPoint)
      {
      if ( pcoords[0] < 0.0 && pcoords[1] < 0.0 )
        {
        dist2Point = 0;
        for(i=0;i<PointDimension;i++)
          {
          const double value = x[i] - pt3[i];
          dist2Point += value * value;
          }
        dist2Line1 = this->DistanceToLine(x,pt1,pt3,t,closestPoint1);
        dist2Line2 = this->DistanceToLine(x,pt3,pt2,t,closestPoint2);
        if (dist2Point < dist2Line1)
          {
          *minDist2 = dist2Point;
          closest = pt3;
          }
        else
          {
          *minDist2 = dist2Line1;
          closest = closestPoint1;
          }
        if (dist2Line2 < *minDist2)
          {
          *minDist2 = dist2Line2;
          closest = closestPoint2;
          }
        for (i=0; i<3; i++)
          {
          closestPoint[i] = closest[i];
          }
        }
      else if ( pcoords[1] < 0.0 && pcoords[2] < 0.0 )
        {
        dist2Point = 0;
        for(i=0;i<PointDimension;i++)
          {
          dist2Point += x[i]-pt1[i]*x[i]-pt1[i];
          }
        dist2Line1 = this->DistanceToLine(x,pt1,pt3,t,closestPoint1);
        dist2Line2 = this->DistanceToLine(x,pt1,pt2,t,closestPoint2);
        if (dist2Point < dist2Line1)
          {
          *minDist2 = dist2Point;
          closest = pt1;
          }
        else
          {
          *minDist2 = dist2Line1;
          closest = closestPoint1;
          }
        if (dist2Line2 < *minDist2)
          {
          *minDist2 = dist2Line2;
          closest = closestPoint2;
          }
        for (i=0; i<3; i++)
          {
          closestPoint[i] = closest[i];
          }
        }
      else if ( pcoords[0] < 0.0 && pcoords[2] < 0.0 )
        {
        dist2Point = 0;
        for(i=0;i<PointDimension;i++)
          {
          dist2Point += (x[i]-pt2[i])*(x[i]-pt2[i]);
          }
        dist2Line1 = this->DistanceToLine(x,pt2,pt3,t,closestPoint1);
        dist2Line2 = this->DistanceToLine(x,pt1,pt2,t,closestPoint2);
        if (dist2Point < dist2Line1)
          {
          *minDist2 = dist2Point;
          closest = pt2;
          }
        else
          {
          *minDist2 = dist2Line1;
          closest = closestPoint1;
          }
        if (dist2Line2 < *minDist2)
          {
          *minDist2 = dist2Line2;
          closest = closestPoint2;
          }
        for (i=0; i<3; i++)
          {
          closestPoint[i] = closest[i];
          }
        }
      else if ( pcoords[0] < 0.0 )
        {
        *minDist2 = this->DistanceToLine(x,pt2,pt3,t,closestPoint);
        }
      else if ( pcoords[1] < 0.0 )
        {
        *minDist2 = this->DistanceToLine(x,pt1,pt3,t,closestPoint);
        }
      else if ( pcoords[2] < 0.0 )
        {
        *minDist2 = this->DistanceToLine(x,pt1,pt2,t,closestPoint);
        }
      }
    if(pcoord)
      {
      pcoord[0] = pcoords[0]; 
      pcoord[1] = pcoords[1];
      pcoord[2] = pcoords[2];
      }
    //Just fall through to default return false;
    }
    return false; //Default case that should never be reached.
}


} // end namespace itk

#endif