1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCompareHistogramImageToImageMetricTest.cxx,v $
Language: C++
Date: $Date: 2004-01-19 17:35:45 $
Version: $Revision: 1.3 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkGaussianImageSource.h"
#include "itkImage.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkKullbackLeiblerCompareHistogramImageToImageMetric.h"
#include "itkTranslationTransform.h"
/** This test uses two 2D-Gaussians (standard deviation RegionSize/2).
This test computes the mutual information between the two images.
*/
int itkCompareHistogramImageToImageMetricTest(int , char* [])
{
try {
// Create two simple images.
const unsigned int ImageDimension = 2;
typedef double PixelType;
typedef double CoordinateRepresentationType;
//Allocate Images
typedef itk::Image<PixelType,ImageDimension> MovingImageType;
typedef itk::Image<PixelType,ImageDimension> FixedImageType;
// Declare Gaussian Sources
typedef itk::GaussianImageSource<MovingImageType> MovingImageSourceType;
typedef itk::GaussianImageSource<FixedImageType> FixedImageSourceType;
typedef MovingImageSourceType::Pointer MovingImageSourcePointer;
typedef FixedImageSourceType::Pointer FixedImageSourcePointer;
// Note: the following declarations are classical arrays
unsigned long fixedImageSize[] = {100, 100};
unsigned long movingImageSize[] = {100, 100};
float fixedImageSpacing[] = {1.0f, 1.0f};
float movingImageSpacing[] = {1.0f, 1.0f};
float fixedImageOrigin[] = {0.0f, 0.0f};
float movingImageOrigin[] = {0.0f, 0.0f};
MovingImageSourceType::Pointer movingImageSource =
MovingImageSourceType::New();
FixedImageSourceType::Pointer fixedImageSource =
FixedImageSourceType::New();
movingImageSource->SetSize(movingImageSize);
movingImageSource->SetOrigin(movingImageOrigin);
movingImageSource->SetSpacing(movingImageSpacing);
movingImageSource->SetNormalized(false);
movingImageSource->SetScale(250.0f);
fixedImageSource->SetSize(fixedImageSize);
fixedImageSource->SetOrigin(fixedImageOrigin);
fixedImageSource->SetSpacing(fixedImageSpacing);
fixedImageSource->SetNormalized(false);
fixedImageSource->SetScale(250.0f);
movingImageSource->Update(); // Force the filter to run
fixedImageSource->Update(); // Force the filter to run
MovingImageType::Pointer movingImage = movingImageSource->GetOutput();
FixedImageType::Pointer fixedImage = fixedImageSource->GetOutput();
// Set up the metric.
typedef itk::KullbackLeiblerCompareHistogramImageToImageMetric<
FixedImageType,
MovingImageType
> MetricType;
typedef MetricType::TransformType TransformBaseType;
typedef MetricType::ScalesType ScalesType;
typedef TransformBaseType::ParametersType ParametersType;
MetricType::Pointer metric = MetricType::New();
unsigned int nBins = 256;
MetricType::HistogramType::SizeType histSize;
histSize[0] = nBins;
histSize[1] = nBins;
metric->SetHistogramSize(histSize);
// Plug the images into the metric.
metric->SetFixedImage(fixedImage);
metric->SetMovingImage(movingImage);
// Set up a transform.
typedef itk::TranslationTransform<CoordinateRepresentationType,
ImageDimension> TransformType;
TransformType::Pointer transform = TransformType::New();
metric->SetTransform(transform.GetPointer());
// Set up an interpolator.
typedef itk::LinearInterpolateImageFunction<MovingImageType,
double> InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
interpolator->SetInputImage(movingImage.GetPointer());
metric->SetInterpolator(interpolator.GetPointer());
// Define the region over which the metric will be computed.
metric->SetFixedImageRegion(fixedImage->GetBufferedRegion());
// Set up transform parameters.
ParametersType parameters(transform->GetNumberOfParameters());
for (unsigned int k = 0; k < ImageDimension; k++)
parameters[k] = 0.0f;
// Set scales for derivative calculation.
ScalesType scales(transform->GetNumberOfParameters());
for (unsigned int k = 0; k < transform->GetNumberOfParameters(); k++)
scales[k] = 1;
metric->SetDerivativeStepLengthScales(scales);
// Now set up the Training Stuff
metric->SetTrainingTransform(transform.GetPointer());
metric->SetTrainingFixedImage(fixedImage);
metric->SetTrainingFixedImageRegion(fixedImage->GetBufferedRegion());
metric->SetTrainingMovingImage(movingImage);
metric->SetTrainingInterpolator(interpolator.GetPointer());
// Initialize the metric.
metric->Initialize();
// Print out metric value and derivative.
MetricType::MeasureType measure = metric->GetValue(parameters);
MetricType::DerivativeType derivative;
metric->GetDerivative(parameters, derivative);
std::cout << "Metric value = " << measure << std::endl
<< "Derivative = " << derivative << std::endl;
// Exercise Print() method.
metric->Print(std::cout);
std::cout << "Test passed." << std::endl;
}
catch (itk::ExceptionObject& ex)
{
std::cerr << "Exception caught!" << std::endl;
std::cerr << ex << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|