File: itkCompareHistogramImageToImageMetricTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (164 lines) | stat: -rwxr-xr-x 6,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkCompareHistogramImageToImageMetricTest.cxx,v $
  Language:  C++
  Date:      $Date: 2004-01-19 17:35:45 $
  Version:   $Revision: 1.3 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkGaussianImageSource.h"
#include "itkImage.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkKullbackLeiblerCompareHistogramImageToImageMetric.h"
#include "itkTranslationTransform.h"

/** This test uses two 2D-Gaussians (standard deviation RegionSize/2).
    This test computes the mutual information between the two images.
*/
int itkCompareHistogramImageToImageMetricTest(int , char* [])
{
  try {
    // Create two simple images.
    const unsigned int ImageDimension = 2;
    typedef double PixelType;
    typedef double CoordinateRepresentationType;
    
    //Allocate Images
    typedef itk::Image<PixelType,ImageDimension> MovingImageType;
    typedef itk::Image<PixelType,ImageDimension> FixedImageType;
    
    // Declare Gaussian Sources
    typedef itk::GaussianImageSource<MovingImageType> MovingImageSourceType;
    typedef itk::GaussianImageSource<FixedImageType> FixedImageSourceType;
    typedef MovingImageSourceType::Pointer MovingImageSourcePointer;
    typedef FixedImageSourceType::Pointer FixedImageSourcePointer;
    
    // Note: the following declarations are classical arrays
    unsigned long fixedImageSize[] = {100,  100};
    unsigned long movingImageSize[] = {100,  100};
    
    float fixedImageSpacing[]  = {1.0f, 1.0f};
    float movingImageSpacing[] = {1.0f, 1.0f};
    
    float fixedImageOrigin[] = {0.0f, 0.0f}; 
    float movingImageOrigin[] = {0.0f, 0.0f}; 
    
    MovingImageSourceType::Pointer movingImageSource =
      MovingImageSourceType::New();
    FixedImageSourceType::Pointer  fixedImageSource  =
      FixedImageSourceType::New();
    
    movingImageSource->SetSize(movingImageSize);
    movingImageSource->SetOrigin(movingImageOrigin);
    movingImageSource->SetSpacing(movingImageSpacing);
    movingImageSource->SetNormalized(false);
    movingImageSource->SetScale(250.0f);
    
    fixedImageSource->SetSize(fixedImageSize);
    fixedImageSource->SetOrigin(fixedImageOrigin);
    fixedImageSource->SetSpacing(fixedImageSpacing);
    fixedImageSource->SetNormalized(false);
    fixedImageSource->SetScale(250.0f);
    
    movingImageSource->Update(); // Force the filter to run
    fixedImageSource->Update();  // Force the filter to run
    
    MovingImageType::Pointer movingImage = movingImageSource->GetOutput();
    FixedImageType::Pointer  fixedImage  = fixedImageSource->GetOutput();
    
    // Set up the metric.
    typedef itk::KullbackLeiblerCompareHistogramImageToImageMetric<
                                                       FixedImageType,
                                                       MovingImageType
                                                               > MetricType;
    typedef MetricType::TransformType TransformBaseType;
    typedef MetricType::ScalesType ScalesType;
    typedef TransformBaseType::ParametersType ParametersType;
    
    MetricType::Pointer metric = MetricType::New();
    
    unsigned int nBins = 256;
    MetricType::HistogramType::SizeType histSize;
    histSize[0] = nBins;
    histSize[1] = nBins;
    metric->SetHistogramSize(histSize);

    // Plug the images into the metric.
    metric->SetFixedImage(fixedImage);
    metric->SetMovingImage(movingImage);

    // Set up a transform.
    typedef itk::TranslationTransform<CoordinateRepresentationType,
      ImageDimension> TransformType;
    
    TransformType::Pointer transform = TransformType::New();
    metric->SetTransform(transform.GetPointer());
    
    // Set up an interpolator.
    typedef itk::LinearInterpolateImageFunction<MovingImageType,
      double> InterpolatorType;
    
    InterpolatorType::Pointer interpolator = InterpolatorType::New();
    interpolator->SetInputImage(movingImage.GetPointer());
    metric->SetInterpolator(interpolator.GetPointer());
    
    // Define the region over which the metric will be computed.
    metric->SetFixedImageRegion(fixedImage->GetBufferedRegion());

    // Set up transform parameters.
    ParametersType parameters(transform->GetNumberOfParameters());

    for (unsigned int k = 0; k < ImageDimension; k++)
      parameters[k] = 0.0f;

    // Set scales for derivative calculation.
    ScalesType scales(transform->GetNumberOfParameters());

    for (unsigned int k = 0; k < transform->GetNumberOfParameters(); k++)
      scales[k] = 1;

    metric->SetDerivativeStepLengthScales(scales);

    // Now set up the Training Stuff
    metric->SetTrainingTransform(transform.GetPointer());
    metric->SetTrainingFixedImage(fixedImage);
    metric->SetTrainingFixedImageRegion(fixedImage->GetBufferedRegion());
    metric->SetTrainingMovingImage(movingImage);
    metric->SetTrainingInterpolator(interpolator.GetPointer());

    // Initialize the metric.
    metric->Initialize();

    // Print out metric value and derivative.
    MetricType::MeasureType measure = metric->GetValue(parameters);
    MetricType::DerivativeType derivative;
    metric->GetDerivative(parameters, derivative);

    std::cout << "Metric value = " << measure << std::endl
              << "Derivative = " << derivative << std::endl;
 
    // Exercise Print() method.
    metric->Print(std::cout);

    std::cout << "Test passed." << std::endl;
  }
  catch (itk::ExceptionObject& ex)
  {
    std::cerr << "Exception caught!" << std::endl;
    std::cerr << ex << std::endl;
    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}